Impact of radiotherapy in chemical composition and mechanical properties of human cervical dentin
an in vitro study
DOI:
https://doi.org/10.1590/Keywords:
Biomechanical phenomena, Dentin, Hardness tests, RadiotherapyAbstract
Ionizing radiation directly affects hard dental tissues, compromising the dental structure, which results in damage to dentin collagen fibers and impacts the integrity of the dentin-enamel junction (DEJ). Objective: To evaluate the effects of radiotherapy on the chemical composition and mechanical properties of human cervical dentin. Methodology: Ten third molars were divided into control/non-irradiated and irradiated groups (n=5). The irradiated teeth were subjected to in vitro radiotherapy with the following protocol: 1.8 Gy daily, five days per week for eight weeks, totaling 72 Gy. The dentin in the cervical region was evaluated for each group. The chemical composition was assessed using Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, focusing on the mineral/matrix ratio (M:M), carbonate/mineral ratio (C:M), and amide I/amide III ratio. Amide I/CH2 ratio was used to assess collagen quality, as amide I reflects protein conformation and hydrogen bonding, while CH2 indicates side-chain vibrations with low sensitivity to molecular orientation. Nanohardness and elastic modulus were evaluated by instrumented indentation. Scanning electron microscopy (SEM) was used to assess the enamel’s morphology. Statistical analysis of each parameter was performed using a t-test. Results: The FTIR analysis showed statistically significant differences in the C:M ratio (p=0.004) and amide I/amide III ratio (p=0.007). Raman spectroscopy revealed significant differences in the M:M ratio (p<0.001), as well as in the amide I/amide III (p<0.001) and amide I/CH2 ratios (p<0.001). Additionally, nanohardness (p=0.04) and the elastic modulus (p=0.003) showed statistically significant differences. SEM images revealed sound dentin shows normal tissue organization, whereas irradiated dentin showed no clear limit between peri and intertubular dentin. Conclusions Radiotherapy induced significant changes in dentin composition and mechanical properties, characterized by increased organic content and phosphate levels, reduced carbonate, and decreased nanohardness and elastic modulus. These findings highlight the adverse effects on dentin's structural integrity.
Downloads
References
- Tolentino ES, Centurion BS, Ferreira LH, Souza AP, Damante JH, Rubira-Bullen IR. Oral adverse effects of head and neck radiotherapy: literature review and suggestion of a clinical oral care guideline for irradiated patients. J Appl Oral Sci. 2011;19(5):448-54. doi: 10.1590/s1678-77572011000500003
» https://doi.org/10.1590/s1678-77572011000500003
- Kielbassa AM, Hinkelbein W, Hellwig E, Meyer-Lückel H. Radiation-related damage to dentition. Lancet Oncol. 2006;7(4):326-35. doi: 10.1016/S1470-2045(06)70658-1
» https://doi.org/10.1016/S1470-2045(06)70658-1
- Lu H, Zhao Q, Guo J, Zeng B, Yu X, Yu D, et al. Direct radiation-induced effects on dental hard tissue. Radiat Oncol. 2019;14(1):5. doi: 10.1186/s13014-019-1208-1
» https://doi.org/10.1186/s13014-019-1208-1
- Miranda RR, Silva AC, Dantas NO, Soares CJ, Novais VR. Chemical analysis of in vivo- irradiated dentine of head and neck cancer patients by ATR-FTIR and Raman spectroscopy. Clin Oral Investig. 2019;23(8):3351-8. doi: 10.1007/s00784-018-2758-6
» https://doi.org/10.1007/s00784-018-2758-6
- Miranda RR, Ribeiro TE, Silva EL, Simamoto PC Júnior, Soares CJ, Novais VR. Effects of fractionation and ionizing radiation dose on the chemical composition and microhardness of enamel. Arch Oral Biol. 2021;121:104959. doi: 10.1016/j.archoralbio.2020.104959
» https://doi.org/10.1016/j.archoralbio.2020.104959
- Kielbassa AM, Beetz I, Schendera A, Hellwig E. Irradiation effects on microhardness of fluoridated and non-fluoridated bovine dentin. Eur J Oral Sci. 1997;105(5 Pt 1):444-7. doi: 10.1111/j.1600-0722.1997.tb02142.x
» https://doi.org/10.1111/j.1600-0722.1997.tb02142.x
- Gonçalves LM, Palma-Dibb RG, Paula-Silva FW, Oliveira HF, Nelson-Filho P, Silva LA, et al. Radiation therapy alters microhardness and microstructure of enamel and dentin of permanent human teeth. J Dent. 2014;42(8):986-92. doi: 10.1016/j.jdent.2014.05.011
» https://doi.org/10.1016/j.jdent.2014.05.011
- Liang X, Zhang JY, Cheng IK, Li JY. Effect of high energy x-ray irradiation on the nano-mechanical properties of human enamel and dentine. Braz Oral Res. 2016;30(1):e9. doi: 10.1590/1807-3107BOR-2016.vol30.0009
» https://doi.org/10.1590/1807-3107BOR-2016.vol30.0009
- Qing P, Huang S, Gao S, Qian L, Yu H. Effect of gamma irradiation on the wear behavior of human tooth dentin. Clin Oral Investig. 2016;20(9):2379-86. doi: 10.1007/s00784-016-1731-5
» https://doi.org/10.1007/s00784-016-1731-5
- Lopes CC, Soares CJ, Lara VC, Arana-Chavez VE, Soares PB, Novais VR. Effect of fluoride application during radiotherapy on enamel demineralization. J Appl Oral Sci. 2018;27:e20180044. doi: 10.1590/1678-7757-2018-0044
» https://doi.org/10.1590/1678-7757-2018-0044
- Sá Ferreira EM, Soares LE, Antunes HS, Uemura ST, Barbosa PS, Salmon HA Jr, et al. Effect of therapeutic doses of radiotherapy on the organic and inorganic contents of the deciduous enamel: an in vitro study. Clin Oral Investig. 2016;20(8):1953-61. doi: 10.1007/s00784-015-1686-y
» https://doi.org/10.1007/s00784-015-1686-y
- Lopes CC, Limirio PH, Novais VR, Dechichi P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl Spectrosc Rev. 2018;53(9):747-69. doi: 10.1080/05704928.2018.1431923
» https://doi.org/10.1080/05704928.2018.1431923
- Toledano M, Aguilera FS, Osorio E, Cabello I, Toledano-Osorio M, Osorio R. Functional and molecular structural analysis of dentine interfaces promoted by a zn-doped self-etching adhesive and an in vitro load cycling model. J Mech Behav Biomed Mater. 2015;50:131-49. doi: 10.1016/j.jmbbm.2015.05.026
» https://doi.org/10.1016/j.jmbbm.2015.05.026
- Xu C, Wang Y. Cross-linked demineralized dentin maintains its mechanical stability when challenged by bacterial collagenase. J Biomed Mater Res B Appl Biomater. 2011;96(2):242-8. doi: 10.1002/jbm.b.31759
» https://doi.org/10.1002/jbm.b.31759
- Oliver W, Pharr G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564-83. doi: 10.1557/JMR.1992.1564
» https://doi.org/10.1557/JMR.1992.1564
- Velo MM, Farha ALH, Santos PS, Shiota A, Sansavino SZ, Souza AT, et al. Gamma radiation increases the risk of radiation-related root dental caries. Oral Oncol. 2017;71:184-5. doi: 10.1016/j.oraloncology.2017.06.007
» https://doi.org/10.1016/j.oraloncology.2017.06.007
- Reed R, Xu C, Liu Y, Gorski JP, Wang Y, Walker MP. Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol. 2015;60(5):690-7. doi: 10.1016/j.archoralbio.2015.02.020
» https://doi.org/10.1016/j.archoralbio.2015.02.020
- Zieba-Palus J, Kunicki M. Application of the micro-FTIR spectroscopy, Raman spectroscopy and XRF method examination of inks. Forensic Sci Int. 2006;158(2-3):164-72. doi: 10.1016/j.forsciint.2005.04.044
» https://doi.org/10.1016/j.forsciint.2005.04.044
- Lieshout HF, Bots CP. The effect of radiotherapy on dental hard tissue: a systematic review. Clin Oral Investig. 2014;18(1):17-24. doi: 10.1007/s00784-013-1034-z
» https://doi.org/10.1007/s00784-013-1034-z
- Douchy L, Gauthier R, Abouelleil-Sayed H, Colon P, Grosgogeat B, Bosco J. The effect of therapeutic radiation on dental enamel and dentin: a systematic review. Dent Mater. 2022;38(7):e181-e201. doi: 10.1016/j.dental.2022.04.014
» https://doi.org/10.1016/j.dental.2022.04.014
- Kielbassa AM, Munz I, Bruggmoser G, Schulte-Mönting J. Effect of demineralization and remineralization on microhardness of irradiated dentin. J Clin Dent. 2002;13(3):104-10.
- Chan KL, Kazarian SG. Attenuated total reflection fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. Chem Soc Rev. 2016;45(7):1850-64. doi: 10.1039/c5cs00515a
» https://doi.org/10.1039/c5cs00515a
- Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R. Infrared microscopic imaging of bone: spatial distribution of CO3(2-). J Bone Miner Res. 2001;16(5):893-900. doi: 10.1359/jbmr.2001.16.5.893
» https://doi.org/10.1359/jbmr.2001.16.5.893
- LeGeros RZ, Bleiwas CB, Retino M, Rohanizadeh R, LeGeros JP. Zinc effect on the in vitro formation of calcium phosphates: relevance to clinical inhibition of calculus formation. Am J Dent. 1999;12(2):65-71.
- Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ. The carbonate environment in bone mineral: a resolution-enhanced fourier transform infrared spectroscopy study. Calcif Tissue Int. 1989;45(3):157-64. doi: 10.1007/BF02556059
» https://doi.org/10.1007/BF02556059
- Liu Y, Hsu CY. Laser-induced compositional changes on enamel: a FT-Raman study. J Dent. 2007;35(3):226-30. doi: 10.1016/j.jdent.2006.08.006
» https://doi.org/10.1016/j.jdent.2006.08.006
- Rodrigues RB, Soares CJ, Simamoto PC Junior, Lara VC, Arana-Chavez VE, Novais VR. Influence of radiotherapy on the dentin properties and bond strength. Clin Oral Investig. 2018;22(2):875-83. doi: 10.1007/s00784-017-2165-4
» https://doi.org/10.1007/s00784-017-2165-4
- Campi LB, Lopes FC, Soares LE, Queiroz AM, Oliveira HF, Saquy PC, et al. Effect of radiotherapy on the chemical composition of root dentin. Head Neck. 2019;41(1):162-9. doi: 10.1002/hed.25493
» https://doi.org/10.1002/hed.25493
- Fränzel W, Gerlach R, Hein HJ, Schaller HG. Effect of tumor therapeutic irradiation on the mechanical properties of teeth tissue. Z Med Phys. 2006;16(2):148-54. doi: 10.1078/0939-3889-00307
» https://doi.org/10.1078/0939-3889-00307
- Queiroz AM, Bonilla CM, Palma-Dibb RG, Oliveira HF, Nelson-Filho P, Silva LA, et al. Radiotherapy activates and protease inhibitors inactivate matrix metalloproteinases in the dentinoenamel junction of permanent teeth. Caries Res. 2019;53(3):253-9. doi: 10.1159/000492081
» https://doi.org/10.1159/000492081
- Velo MM, Farha AL, Santos PS, Shiota A, Sansavino SZ, Souza AT, et al. Radiotherapy alters the composition, structural and mechanical properties of root dentin in vitro. Clin Oral Investig. 2018;22(8):2871-8. doi: 10.1007/s00784-018-2373-6
» https://doi.org/10.1007/s00784-018-2373-6
- Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone. 1998;22(3):181-7. doi: 10.1016/s8756-3282(97)00279-2
» https://doi.org/10.1016/s8756-3282(97)00279-2
- Kielbassa AM. In situ induced demineralization in irradiated and non-irradiated human dentin. Eur J Oral Sci. 2000;108(3):214-21. doi: 10.1034/j.1600-0722.2000.108003214.x
» https://doi.org/10.1034/j.1600-0722.2000.108003214.x
- Gomes-Silva W, Prado Ribeiro AC, Castro G Junior, Salvajoli JV, Palmier NR, Lopes MA, et al. Head and neck radiotherapy does not increase gelatinase (metalloproteinase-2 and -9) expression or activity in teeth irradiated in vivo. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;124(2):175-82. doi: 10.1016/j.oooo.2017.04.009
» https://doi.org/10.1016/j.oooo.2017.04.009
- Kielbassa AM, Schaller HG, Hellwig E. Qualitative observations of in situ caries in irradiated dentin: a combined SEM and TMR study. Acta Med Dent Helv. 1998;3:161-8.
- Madrid CC, Paglioni MP, Line SR, Vasconcelos KG, Brandão TB, Lopes MA, et al. Structural analysis of enamel in teeth from head-and-neck cancer patients who underwent radiotherapy. Caries Res. 2017;51(2):119-28. doi: 10.1159/000452866

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Renata Borges Rodrigues, Allyne Jorcelino Daloia de Carvalho, Bruna Vanessa Felipe e Silva, Paulo Cézar Simamoto-Júnior, Veridiana Resende Novais

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.