Chitosan nanoparticles suspension can minimize enamel loss after in vitro erosive challenge

Authors

  • Renata Cristina Sobreira França Universidade Federal da Paraíba (UFPB). Programa de Pós-Graduação em Odontologia
  • Rebeca Tibau Aguiar Dias Universidade Federal da Paraíba (UFPB). Programa de Pós-Graduação em Odontologia
  • Ranam Moreira Reis Universidade Estadual de Campinas (UNICAMP). Programa de Pós-Graduação em Odontologia https://orcid.org/0000-0001-8001-5541
  • Frederico Barbosa de Sousa Universidade Federal da Paraíba (UFPB). Programa de Pós-Graduação em Odontologia
  • Hugo Lemes Carlo Universidade Federal de Uberlândia (UFU) https://orcid.org/0000-0002-5111-7781
  • Rogerio Lacerda dos Santos Universidade Federal de Juiz de Fora https://orcid.org/0000-0002-6213-9206
  • Fabíola Galbiatti de Carvalho Universidade Federal de Uberlândia (UFU) https://orcid.org/0000-0003-2510-1329

DOI:

https://doi.org/10.1590/

Keywords:

Chitosan, Nanoparticles, Erosion, Enamel

Abstract

Chitosan nanoparticles suspension (ChNPs) showed antimicrobial effects in the oral cavity, but its effects on enamel erosion prevention remain little explored. Objective  This study synthesized ChNPs and evaluated their effect on enamel after erosive challenge. Design  ChNPs were synthesized by ionic gelation and characterized using scanning electron microscopy (SEM), infrared spectrophotometry (FTIR), dynamic light scattering methods (DLS) and zeta potential (ZP). In total, 56 human enamel blocks were divided into four groups (n=14/group): (i) ChNPs suspension (4.4mg/mL); (ii) 0.05% sodium fluoride solution (NaF); (iii) chitosan solution (5.0 mg/mL); and (iv) distilled water. After incubation in freshly collected human saliva (3h), the samples were exposed to erosive challenge in 1% citric acid (90s) and remineralizing solution (2h) performed four times a day. After the 1st and 4th acid exposures, solutions were applied for 2 min. After 7 days, % Vickers surface hardness change (% SMH) was obtained using 300 g load applied for 15s. Enamel surface loss was evaluated using optical profilometer by subtracting the final profile values from baseline ones. Data were analyzed by ANOVA and post-hoc T tests (α=0.05). Surface topography was obtained by optical profilometer. Results  SEM revealed the formation of spherical nanoparticles. DLS showed nanoparticles with 85.7±10.5 nm diameter and ZP value of +45.5±5.4mV. Enamel surface loss was significantly lower in ChNPs and NaF groups, exhibiting a less rough surface in the treated areas. ChNPs, NaF and chitosan groups showed lower % SMH values. Conclusions  ChNPs suspension minimized enamel loss after in vitro erosive challenge and appears to be a promising material for enamel erosion prevention.

Downloads

Download data is not yet available.

References

Zanatta RF, Caneppele TM, Scaramucci T, El-Dib R, Maia LC, Ferreira DM, et al. Protective effect of fluorides on erosion and erosion/abrasion in enamel: a systematic review and meta-analysis of randomized in situ trials. Arch Oral Biol. 2020;120:104945. doi: 10.1016/j.archoralbio.2020.104945. »https://doi.org/10.1016/j.archoralbio.2020.104945.

Ávila DM, Zanatta RF, Scaramucci T, Aoki IV, Torres CR, Borges AB. Influence of bioadhesive polymers on the protective effect of fluoride against erosion. J Dent. 2017;56:45-52. doi: 10.1016/j.jdent.2016.10.015. »https://doi.org/10.1016/j.jdent.2016.10.015.

Medeiros MI, Carlo HL, Lacerda-Santos R, Lima BA, Souza FB, Rodrigues JA, et al. Thickness and nanomechanical properties of protective layer formed by TiF 4 varnish on enamel after erosion. Braz Oral Res. 2016;30(1):S1806-83242016000100264. doi: 10.1590/1807-3107BOR-2016.vol30.0075. »https://doi.org/10.1590/1807-3107BOR-2016.vol30.0075.

Souza BM, Santi LR, Souza SM, Buzalaf MA, Magalhães AC. Effect of an experimental mouth rinse containing NaF and TiF 4 on tooth erosion and abrasion in situ. J Dent. 2018;73:45-9. doi: 10.1016/j.jdent.2018.04.001. » https://doi.org/10.1016/j.jdent.2018.04.001.

Bezerra SJ, João-Souza SH, Aoki IV, Borges AB, Hara AT, Scaramucci T. Anti-erosive effect of solutions containing sodium fluoride, stannous chloride, and selected film-forming polymers. Caries Res. 2018;53:305-13. doi: 10.1159/000493388

» https://doi.org/10.1159/000493388.

Ganss C, Schlueter N, Hardt M, Schattenberg P, Klimek J. Effect of fluoride compounds on enamel erosion in vitro: a comparison of amine, sodium and stannous fluoride. Caries Res. 2008;42(1):2-7. doi: 10.1159/000111743

»https://doi.org/10.1159/000111743.

Machado AC, Bezerra SJ, João-Souza SH, Caetano TM, Russo LC, Carvalho TS, et al. Using fluoride mouthrinses before or after toothbrushing: effect on erosive tooth wear. Arch Oral Biol. 2019;108:104520. doi: 10.1016/j.archoralbio.2019.104520

»https://doi.org/10.1016/j.archoralbio.2019.104520.

Mason SC, Shirodaria S, Sufi F, Rees GD, Birkhed D. Evaluation of salivary fluoride retention from a new high fluoride mouthrinse. J Dent. 2010;38 Suppl 3:S30-6. doi: 10.1016/S0300-5712(11)70006-9. »https://doi.org/10.1016/S0300-5712(11)70006-9.

Lopes AG, Magalhães TC, Denadai ÂM, Carlo HL, Santos RL, Munchow EA, et al. Preparation and characterization of NaF/Chitosan supramolecular complex and their effects on prevention of enamel demineralization. J Mech Behav Biomed Mater. 2023;147:106134. doi: 10.1016/j.jmbbm.2023.106134. »https://doi.org/10.1016/j.jmbbm.2023.106134.

Magalhães TC, Teixeira NM, França RS, Denadai ÂM, Santos RL, Carlo HL, et al. Synthesis of a chitosan nanoparticle suspension and its protective effects against enamel demineralization after an in vitro cariogenic challenge. J Appl Oral Sci. 2021;29:e20210120. doi: 10.1590/ 1678-7757-2021-0120. »https://doi.org/10.1590/ 1678-7757-2021-0120.

Carvalho TS, Lussi A. Combined effect of a fluoride-stannous- and chitosan-containing toothpaste and stannous-containing rinse on the prevention of initial enamel erosion-abrasion. J Dent. 2014;42:450-9. doi: 10.1016/j.jdent.2014.01.004. »https://doi.org/10.1016/j.jdent.2014.01.004.

Francese MM, Urasaki BAN, Barros MC, Ferrari CR, Grizzo LT, Magalhães AC. Toothpaste containing TiF 4 and chitosan against erosive tooth wear in situ. J Dent. 2024;145:104977. doi: 10.1016/j.jdent.2024.104977. »https://doi.org/10.1016/j.jdent.2024.104977.

Aboayana M, Elgayar MI, Hussein MH. Silver nanoparticles versus chitosan nanoparticles effects on demineralized enamel. BMC Oral Health. 2024;24(1):1282. doi: 10.1186/s12903-024-04982-4. »https://doi.org/10.1186/s12903-024-04982-4.

Ururahy MS, Curylofo-Zotti FA, Galo R, Nogueira LF, Ramos AP, Corona SA. Wettability and surface morphology of eroded dentin treated with chitosan. Arch Oral Biol. 2017;75:68-73. doi: 10.1016/j.archoralbio.2016.11.017. »https://doi.org/10.1016/j.archoralbio.2016.11.017.

Carvalho FG, Magalhães TC, Teixeira NM, Gondim BL, Carlo HL, Santos RL, et al. Synthesis and characterization of TPP/chitosan nanoparticles: Colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Mater Sci Eng C Mater Biol Appl. 2019;104:109885. doi: 10.1016/j.msec.2019.109885. »https://doi.org/10.1016/j.msec.2019.109885.

Garcia LG, Rocha MG, Freire RS, Nunes PI, Nunes JV, Fernandes MR, et al. Chitosan microparticles loaded with essential oils inhibit duo-biofilms of Candida albicans and Streptococcus mutans. J Appl Oral Sci. 2023;31:e20230146. doi: 10.1590/1678-7757-2023-0146.

»https://doi.org/10.1590/1678-7757-2023-0146.

Sun FC, Engelman EE, McGuire JA, Kosmoski G, Carratello L, Ricci-Nittel D, et al. Impact of an anticaries mouthrinse on in vitro remineralization and microbial control. Int J Dent. 2014;2014:982071. doi: 10.1155/2014/982071. »https://doi.org/10.1155/2014/982071.

Clogston JD, Patri AK. Zeta potential measurement. Methods Mol Biol. 2011;697:63-70. doi:10.1007/978-1-60327-198-1_6

»https://doi.org/10.1007/978-1-60327-198-1_6.

Cohen J. Statistical power analysis for the behavioral sciences. 2 nd ed. Hillsdale, NJ: Lawrence Erlbaum; 1988.

Zanatta RF, Ávila DM, Miyamoto KM, Torres CR, Borges AB. Influence of surfactants and fluoride against enamel erosion. Caries Res. 2019;53(1):1-9. doi: 10.1159/000488207. »https://doi.org/10.1159/000488207.

Lussi A, Carvalho TS. Analyses of the erosive effect of dietary substances and medications on deciduous teeth. PLoS One. 2015;10(12):e0143957. doi: 10.1371/journal.pone.0143957. »https://doi.org/10.1371/journal.pone.0143957.

Souza BM, Lima LL, Comar LP, Buzalaf MA, Magalhães AC. Effect of experimental mouthrinses containing the combination of NaF and TiF 4 on enamel erosive wear in vitro. Arch Oral Biol. 2014;59:621-4. doi: 10.1016/j.archoralbio.2014.03.008

»https://doi.org/10.1016/j.archoralbio.2014.03.008.

Scaramucci T, Borges AB, Lippert F, Zero DT, Aoki IV, Hara AT. Anti-erosive properties of solutions containing fluoride and different film-forming agents. J Dent. 2015;43:458-65. doi: 10.1016/j.jdent.2015.01.007. »https://doi.org/10.1016/j.jdent.2015.01.007.

Ganss C, Lussi A, Grunau O, Klimek J, Schlueter N. Conventional and anti-erosion fluoride toothpastes: effect on enamel erosion and erosion abrasion. Caries Res. 2011;45:581-9. doi: 10.1159/000334318. »https://doi.org/10.1159/000334318.

Carvalho FG, Brasil VL, Silva Filho TJ, Carlo HL, Santos RL, Lima BA. Protective effect of calcium nanophosphate and CPP-ACP agents on enamel erosion. Braz Oral Res. 2013;27:463-70. doi: 10.1590/S1806-83242013000600004. »https://doi.org/10.1590/S1806-83242013000600004.

Field A. Discovering Statistics Using SPSS. 3 rd ed. London: SAGE; 2009.

Dean A, Voss D. Design and analysis of experiments. New York: Springer; 1999.

Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt. 2014;34:502-8. doi: 10.1111/opo.12131.

»https://doi.org/10.1111/opo.12131.

Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339(16):2693-700. doi: 10.1016/j.carres.2004.09.007. »https://doi.org/10.1016/j.carres.2004.09.007.

Pan C, Qian J, Zhao C, Yang H, Zhao X, Guo H. Study on the relationship between crosslinking degree and properties of TPP crosslinked chitosan nanoparticles. Carbohydr Polym. 2020;241:116349. doi: 10.1016/j.carbpol.2020.116349. »https://doi.org/10.1016/j.carbpol.2020.116349.

Ikono R, Vibriani A, Wibowo I, Saputro KE, Muliawan W, Bachtiar BM, et al. Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms. BMC Res Notes. 2019;12:383. doi: 10.1186/s13104-019-4422-x

» https://doi.org/10.1186/s13104-019-4422-x.

Sreekumar S, Goycoolea FM, Moerschbacher BM, Rivera-Rodriguez GR. Parameters influencing the size of chitosan-TPP nano- and microparticles. Sci Rep. 2018;8(1):4695. doi:10.1038/s41598-018-23064-4. »https://doi.org/10.1038/s41598-018-23064-4.

Alison L, Demirörs AF, Tervoort E, Teleki A, Vermant J, Studart AR. Emulsions stabilized by chitosan-modified silica nanoparticles: pH control of structure-property relations. Langmuir. 2018;34:6147-60. doi: 10.1021/acs.langmuir.8b00622. »https://doi.org/10.1021/acs.langmuir.8b00622.

Vukosavljevic D, Custodio W, Buzalaf MA, Hara AT, Siqueira WL. Acquired pellicle as a modulator for dental erosion. Arch Oral Biol. 2014;59(6):631-8. doi: 10.1016/j.archoralbio.2014.02.002. »https://doi.org/10.1016/j.archoralbio.2014.02.002.

Carvalho TS, Araújo TT, Ventura TM, Dionizio A, Câmara JV, Moraes SM, et al. Acquired pellicle protein-based engineering protects against erosive demineralization. J Dent. 2020;102:103478. doi: 10.1016/j.jdent.2020.103478. »https://doi.org/10.1016/j.jdent.2020.103478.

Dedinaite A, Lundin M, Macakova L, Auletta T. Mucin-chitosan complexes at the solid-liquid interface: multilayer formation and stability in surfactant solutions. Langmuir. 2005;21:9502-9. doi: 10.1021/la0511844. »https://doi.org/10.1021/la0511844.

Liu H, Chen B, Mao Z, Gao C. Chitosan nanoparticles for loading of toothpaste actives and adhesion on tooth analogs. J Appl Polym Sci. 2007;106:4248-56. doi: 10.1002/app.27078. »https://doi.org/10.1002/app.27078.

Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, et al. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res. 2001;55(1):20-7. doi: 10.1002/1097-4636(200104)55:1<20::aid jbm30>3.0.co;2-f.

O'Toole S, Mistry M, Mutahar M, Moazzez R, Bartlett D. Sequence of stannous and sodium fluoride solutions to prevent enamel erosion. J Dent. 2015;43:1498-503. doi: 10.1016/j.jdent.2015.10.003 »https://doi.org/10.1016/j.jdent.2015.10.003.

Ganss C, Schlueter N, Klimek J. Retention of KOH-soluble fluoride on enamel and dentine under erosive conditions - a comparison of in vitro and in situ results. Arch Oral Biol. 2007;52:9-14. doi: 10.1016/j.archoralbio.2006.07.004. »https://doi.org/10.1016/j.archoralbio.2006.07.004.

Schlueter N, Klimek J, Ganss C. Efficacy of an experimental tin-F-containing solution in erosive tissue loss in enamel and dentine in situ. Caries Res. 2009;43:415-21. doi: 10.1159/000252974. »https://doi.org/10.1159/000252974.

Lussi A, Lussi J, Carvalho TS, Cvikl B. Toothbrushing after an erosive attack: will waiting avoid tooth wear? Eur J Oral Sci. 2014;122:353-9. doi: 10.1111/eos.1214. » https://doi.org/10.1111/eos.1214.

Downloads

Published

2025-01-14

Issue

Section

Original Articles

How to Cite

França, R. C. S., Dias, R. T. A., Reis, R. M., Sousa, F. B. de, Carlo, H. L., Santos, R. L. dos, & Carvalho, F. G. de. (2025). Chitosan nanoparticles suspension can minimize enamel loss after in vitro erosive challenge. Journal of Applied Oral Science, 33, e20240445. https://doi.org/10.1590/