Identifying metabolic biomarkers and pathways in pulpitis: a metabolomic study using ultra-high-performance liquid chromatography/orbitrap mass spectrometry

Authors

  • Congpeng Wen Wenzhou Central Hospital. Wenzhou Medical University. Dingli Clinical College
  • Xueqin Chen Wenzhou Central Hospital. Wenzhou Medical University. Dingli Clinical College
  • Linfeng Lai Wenzhou Central Hospital. Wenzhou Medical University. Dingli Clinical College https://orcid.org/0009-0007-6190-2461

DOI:

https://doi.org/10.1590/

Keywords:

Pulpitis, Metabolomics, Biomarker, UPLC-Orbitrap/MS, Metabolic pathway

Abstract

Pulpitis, which is often triggered by caries and trauma, is a significant clinical challenge due to its prevalence. This research aims to uncover potential metabolic biomarkers for pulpitis and map out the implicated metabolic pathways, thereby laying a foundation for enhanced diagnostic and preventive strategies. Methodology  We analyzed pulp samples from 12 participants (six who had pulpitis and six who had healthy teeth) using serum metabolomics via ultra-high-performance liquid chromatography coupled with Orbitrap mass spectrometry. Important biomarkers were pinpointed via multivariate analysis and orthogonal partial least squares discriminant analysis. Additionally, correlation and biomarker pathway enrichment analyses were conducted to explore the relations between differentially expressed biomarkers and their associated biological pathways. Specific metabolites of interest were further examined via alkaline phosphatase (ALP) staining, Alizarin Red staining, and RT-qPCR analysis. Results  We identified 22 significant biomarkers (13 increased, nine decreased) related to 18 metabolic pathways in pulpitis cases. Key biomarkers included ascorbic acid, inosine, allopurinol riboside, and L-asparagine, in which ascorbic acid and inosine showed the most substantial downregulation and strongest association with pulpitis. Notably, aminoacyl-tRNA biosynthesis and retrograde endocannabinoid signaling pathways were closely linked with pulpitis. Ascorbic acid enhanced the osteogenic differentiation, calcium deposition, as well as the expression of osteogenic genes of human dental pulp stem cells (DPSCs).Conclusions: The identified biomarkers and metabolic pathways offer insights into the pathogenesis of pulpitis and have potential applications in developing preventive treatments.

Downloads

Download data is not yet available.

References

Renard E, Gaudin A, Bienvenu G, Amiaud J, Farges JC, Cuturi MC, et al. Immune cells and molecular networks in experimentally induced pulpitis. J Dent Res. 2016;95(2):196-205. doi: 10.1177/0022034515612086. »https://doi.org/10.1177/0022034515612086.

Currie CC, Stone SJ, Connolly J, Durham J. Dental pain in the medical emergency department: a cross-sectional study. J Oral Rehabil. 2017;44(2):105-11. doi: 10.1111/joor.12462. »https://doi.org/10.1111/joor.12462.

Lee DK, Kim SV, Limansubroto AN, Yen A, Soundia A, Wang CY, et al. Nanodiamond-gutta percha composite biomaterials for root canal. therapy. ACS Nano. 2015;9(11):11490-501. doi: 10.1021/acsnano.5b05718. »https://doi.org/10.1021/acsnano.5b05718.

Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of intestinal barrier function by microbial metabolites. Cell Mol Gastroenterol Hepatol. 2021;11(5):1463-82. doi: 10.1016/j.jcmgh.2021.02.007. »https://doi.org/10.1016/j.jcmgh.2021.02.007.

Lee J, Perikamana SK, Ahmad T, Lee MS, Yang HS, Kim DG, et al. Controlled retention of BMP-2-derived peptide on nanofibers based on mussel-inspired adhesion for bone formation. Tissue Eng Part A. 2017;23(7-8):323-34. doi: 10.1089/ten.TEA.2016.0363. »https://doi.org/10.1089/ten.TEA.2016.0363.

Zhang X, Guo WG, Cui H, Liu HY, Zhang Y, Muller WE, et al. In vitro and in vivo enhancement of osteogenic capacity in a synthetic BMP-2 derived peptide-coated mineralized collagen composite. J Tissue Eng Regen Med. 2016;10(2):99-107. doi: 10.1002/term.1705. »https://doi.org/10.1002/term.1705.

Zhou X, Feng W, Qiu K, Chen L, Wang W, Nie W, et al. BMP-2 derived peptide and dexamethasone incorporated mesoporous silica nanoparticles for enhanced osteogenic differentiation of bone mesenchymal stem cells. ACS Appl Mater Interfaces. 2015;7(29):15777-89. doi: 10.1021/acsami.5b02636. »https://doi.org/10.1021/acsami.5b02636.

Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, Jarmusch AK, Dorrestein PC. Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol. 2022;20(3):143-60.

Zhao YY, Cheng XL, Vaziri ND, Liu S, Lin RC. UPLC-based metabonomic applications for discovering biomarkers of diseases in clinical chemistry. Clin Biochem. 2014;47(15):16-26. doi: 10.1038/s41579-021-00621-9. »https://doi.org/10.1038/s41579-021-00621-9.

Sethi S, Brietzke E. Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. Int J Neuropsychopharmacol. 2015;19(3):pyv096. doi: 10.1093/ijnp/pyv096. »https://doi.org/10.1093/ijnp/pyv096.

Liu XW, Tang CL, Zheng H, Wu JX, Wu F, Mo YY, et al. Investigation of the hepatoprotective effect of Corydalis saxicola Bunting on carbon tetrachloride-induced liver fibrosis in rats by (1)H-NMR-based metabonomics and network pharmacology approaches. J Pharm Biomed Anal. 2018;159:252-61. doi: 10.1016/j.jpba.2018.06.065. »https://doi.org/10.1016/j.jpba.2018.06.065.

Yang W, Zhou G, Zou S, Yang W, Liu A, Sun S, et al. Metabonomics of d-glucaro-1,4-lactone in preventing diethylnitrosamine-induced liver cancer in rats. Pharm Biol. 2018;56(1):643-8. doi: 10.1080/13880209.2018.1525414. »https://doi.org/10.1080/13880209.2018.1525414.

Pouralijan Amiri M, Khoshkam M, Salek RM, Madadi R, Faghanzadeh Ganji G, Ramazani A. Metabolomics in early detection and prognosis of acute coronary syndrome. Clin Chim Acta. 2019;495:43-53. doi: 10.1016/j.cca.2019.03.1632. »https://doi.org/10.1016/j.cca.2019.03.1632.

Wang Y, Sun W, Zheng J, Xu C, Wang X, Li T, et al. Urinary metabonomic study of patients with acute coronary syndrome using UPLC-QTOF/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1100-1101:122-30. doi: 10.1016/j.jchromb.2018.10.005. »https://doi.org/10.1016/j.jchromb.2018.10.005.

Chaleckis R, Meister I, Zhang P, Wheelock CE. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Curr Opin Biotechnol. 2019;55:44-50. doi: 10.1016/j.copbio.2018.07.010. »https://doi.org/10.1016/j.copbio.2018.07.010.

Hynne H, Sandas EM, Elgstoen KB, Rootwelt H, Utheim TP, Galtung HK, et al. Saliva metabolomics in dry mouth patients with head and neck cancer or Sjogren's Syndrome. Cells. 2022;11(3):323.

Sakanaka A, Kuboniwa M, Katakami N, Furuno M, Nishizawa H, Omori K, et al. Saliva and plasma reflect metabolism altered by diabetes and periodontitis. Front Mol Biosci. 2021;8:742002. doi: 10.3389/fmolb.2021.742002. »https://doi.org/10.3389/fmolb.2021.742002.

Garcia-Contreras R, Sugimoto M, Umemura N, Kaneko M, Hatakeyama Y, Soga T, et al. Alteration of metabolomic profiles by titanium dioxide nanoparticles in human gingivitis model. Biomaterials. 2015;57:33-40. doi: 10.1016/j.biomaterials.2015.03.059

»https://doi.org/10.1016/j.biomaterials.2015.03.059.

Nijakowski K, Gruszczynski D, Kopala D, Surdacka A. Salivary metabolomics for oral squamous cell carcinoma diagnosis: a systematic review. Metabolites. 2022;12(4):294. doi: 10.3390/metabo12040294. »https://doi.org/10.3390/metabo12040294.

Awaad AS, Al-Mudhayyif HA, Al-Othman MR, Zain ME, El-Meligy RM. Amhezole, A novel fungal secondary metabolite from aspergillus terreus for treatment of microbial mouth infection. Phytother Res. 2017;31(3):395-402. doi: 10.1002/ptr.5760. »https://doi.org/10.1002/ptr.5760.

Niederman R, Buyle-Bodin Y, Lu BY, Robinson P, Naleway C. Short-chain carboxylic acid concentration in human gingival crevicular fluid. J Dent Res. 1997;76(1):575-9. doi: 10.1177/0022034597076001080. »https://doi.org/10.1177/0022034597076001080.

Gultekin SE, Senguven B, Sofuoglu A, Taner L, Koch M. Effect of the topical use of the antioxidant taurine on the two basement membrane proteins of regenerating oral gingival epithelium. J Periodontol. 2012;83(1):127-34. doi: 10.1902/jop.2011.100568. »https://doi.org/10.1902/jop.2011.100568.

Jiang L, Lu Y, Zhao H, He W. Polysaccharides from aloe vera target the Wnt/beta-catenin pathway to impact the tooth density of pulpitis rats. Acta Cir Bras. 2023;37(12):e371202. doi: 10.1590/acb371202. »https://doi.org/10.1590/acb371202.

Eba H, Murasawa Y, Iohara K, Isogai Z, Nakamura H, Nakamura H, et al. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth. PLoS One. 2012;7(12):e52523. doi: 10.1371/journal.pone.0052523. »https://doi.org/10.1371/journal.pone.0052523.

Fazio E, Spadaro S, Corsaro C, Neri G, Leonardi SG, Neri F, et al. Metal-oxide based nanomaterials: synthesis, characterization and their applications in electrical and electrochemical sensors. Sensors (Basel). 2021;21(7):2494. doi: 10.3390/s21072494. »https://doi.org/10.3390/s21072494.

Qin W, Yang Y, Wang Y, Zhang X, Liu X. Transcriptomic and metabolomic analysis reveals the difference between large and small flower taxa of Herba Epimedii during flavonoid accumulation. Sci Rep. 2022;12(1):2762. doi: 10.1038/s41598-022-06761-z. »https://doi.org/10.1038/s41598-022-06761-z.

Martins MC, Mafra V, Monte-Bello CC, Caldana C. The contribution of metabolomics to systems biology: current applications bridging genotype and phenotype in plant science. Adv Exp Med Biol. 2021;1346:91-105. doi: 10.1007/978-3-030-80352-0_5. »https://doi.org/10.1007/978-3-030-80352-0_5.

Nygren H, Seppanen-Laakso T, Castillo S, Hyotylainen T, Oresic M. Liquid chromatography-mass spectrometry (LC-MS)-based lipidomics for studies of body fluids and tissues. Methods Mol Biol. 2011;708:247-57. doi: 10.1007/978-1-61737-985-7_15. »https://doi.org/10.1007/978-1-61737-985-7_15.

Jia W, Di C, Zhang R, Shi L. Application of liquid chromatography mass spectrometry-based lipidomics to dairy products research: an emerging modulator of gut microbiota and human metabolic disease risk. Food Res Int. 2022;157:111206. doi: 10.1016/j.foodres.2022.111206. »https://doi.org/10.1016/j.foodres.2022.111206.

Jeanneret F, Tonoli D, Rossier MF, Saugy M, Boccard J, Rudaz S. Evaluation of steroidomics by liquid chromatography hyphenated to mass spectrometry as a powerful analytical strategy for measuring human steroid perturbations. J Chromatogr A. 2016;1430:97-112. doi: 10.1016/j.chroma.2015.07.008. »https://doi.org/10.1016/j.chroma.2015.07.008.

Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 2016;22(6):463-93. doi: 10.1111/odi.12446

»https://doi.org/10.1111/odi.12446.

Znamirowska A, Szajnar K, Pawlos M. Effect of vitamin C source on its stability during storage and the properties of milk fermented by Lactobacillus rhamnosus Molecules. 2021;26(20):6187. doi: 10.3390/molecules26206187. »https://doi.org/10.3390/molecules26206187.

Yuan S, Mason AM, Carter P, Burgess S, Larsson SC. Homocysteine, B vitamins, and cardiovascular disease: a Mendelian randomization study. BMC Med. 2021;19(1):97. doi: 10.1186/s12916-021-01977-8. »https://doi.org/10.1186/s12916-021-01977-8.

Ogawara M, Aoki K, Okiji T, Suda H. Effect of ascorbic acid deficiency on primary and reparative dentinogenesis in non-ascorbate synthesizing ODS rats. Arch Oral Biol. 1997;42(10-11):695-704. doi: 10.1016/s0003-9969(97)00068-x. »https://doi.org/10.1016/s0003-9969(97)00068-x.

Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, et al. Structure of a ribonucleic acid. Science. 1965;147(3664):1462-5. doi: 10.1126/science.147.3664.1462. »https://doi.org/10.1126/science.147.3664.1462.

Kline PC, Schramm VL. Purine nucleoside phosphorylase. Inosine hydrolysis, tight binding of the hypoxanthine intermediate, and third-the-sites reactivity. Biochemistry. 1992;31(26):5964-73. doi: 10.1021/bi00141a003. »https://doi.org/10.1021/bi00141a003.

Srinivasan S, Torres AG, Ribas de Pouplana L. Inosine in biology and disease. Genes (Basel). 2021;12(4):600. doi: 10.3390/genes12040600

» https://doi.org/10.3390/genes12040600.

Park SH, Ye L, Love RM, Farges JC, Yumoto H. Inflammation of the dental pulp. mediators inflamm. 2015;2015:980196. doi: 10.1155/2015/980196. »https://doi.org/10.1155/2015/980196.

Rechenberg DK, Galicia JC, Peters OA. Biological markers for pulpal inflammation: a systematic review. PLoS One. 2016;11(11):e0167289. doi: 10.1371/journal.pone.0167289. »https://doi.org/10.1371/journal.pone.0167289.

Pohl S, Akamp T, Smeda M, Uderhardt S, Besold D, Krastl G, et al. Understanding dental pulp inflammation: from signaling to structure. Front Immunol. 2024;15:1474466. doi: 10.3389/fimmu.2024.1474466. »https://doi.org/10.3389/fimmu.2024.1474466.

Downloads

Published

2025-01-14

Issue

Section

Original Articles

How to Cite

Wen, C., Chen, X., & Lai, L. (2025). Identifying metabolic biomarkers and pathways in pulpitis: a metabolomic study using ultra-high-performance liquid chromatography/orbitrap mass spectrometry. Journal of Applied Oral Science, 33, e20240428. https://doi.org/10.1590/