Acquired pellicle engineering: a fascinating approach to prevent demineralization

Authors

DOI:

https://doi.org/10.1590/1678-7757-2024-0359

Keywords:

Acquired Enamel Pellicle, Cystatin, Hemoglobin, Proteins, Statherin

Abstract

The acquired enamel pellicle (AEP) consists of an organic, acellular, and bacteria-free film, formed in vivo as a result of biomolecules adsorption onto the tooth surface. It is composed of proteins, glycoproteins, lipids, phospholipids, and other macromolecules, such as carbohydrates. The AEP formation process is complex and can be divided into three stages: initiation, development, and maturation. The pellicle has two main layers: the globular and basal layers. The basal layer offers the most protection against demineralization, as the subsequent globular layer is weaker and less tenacious. The formation of the AEP can be influenced by various factors, such as the physicochemical properties of the teeth, location in the oral cavity, pathologies, and even the oral microbiota. With the advancement of “omics” techniques, it has been possible to observe the presence of acid-resistant proteins in the AEP, which allowed the development of the “acquired pellicle engineering” strategy. This strategy involves enriching and modifying the basal layer with acid-resistant proteins. Among these proteins, hemoglobin, statherin-derived peptide, and a protein derived from sugarcane stand out. The objective of this literature review is to provide a comprehensive overview of the AEP, detailing its composition, formation process, and protective functions. Additionally, the review aims to explore recent advances in the field of “acquired pellicle engineering,” highlighting the acid-resistant proteins of the AEP and their potential applications in dentistry. Finally, the review intends to highlight the clinical implications of these findings and how they may contribute to the development of new strategies for the prevention and treatment of dental pathologies according to published studies.

Downloads

Download data is not yet available.

References

Nasmyth A. On the structure, physiology, and pathology of the persistent capsular investments and pulp of the tooth. Med Chir Trans. 1839;22:310-28. doi: 10.1177/095952873902200123. » https://doi.org/10.1177/095952873902200123.

Chase WB. The origin, structure, and duration of Nasmyth's membrane. Anat Rec. 1926;33:357-6. doi: 10.1002/ar.1090330503. » https://doi.org/10.1002/ar.1090330503.

Dawes C, Jenkins GN, Tongue CH. The nomenclature of the integuments of the enamel surface of the teeth. Br Dent J. 1963;115:65-8.

Hannig M. Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin Oral Investig. 1999;3(2):88-95. doi: 10.1007/s007840050084. »https://doi.org/10.1007/s007840050084.

Rosan B, Lamont RJ. Dental plaque formation. Microbes Infect. 2000;2(13):1599-607. doi: 10.1016/s1286-4579(00)01316-2

»https://doi.org/10.1016/s1286-4579(00)01316-2.

Hannig C, Hannig M, Attin T. Enzymes in the acquired enamel pellicle. Eur J Oral Sci. 2005;113(1):2-13. doi: 10.1111/j.1600-0722.2004.00180.x. »https://doi.org/10.1111/j.1600-0722.2004.00180.x.

Armstrong WG. Amino-acid composition of the acquired pellicle of human tooth enamel. Nature. 1966;210(5032):197-8. doi: 10.1038/210197a0. »https://doi.org/10.1038/210197a0.

Yao Y, Berg EA, Costello CE, Troxler RF, Oppenheim FG. Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches. J Biol Chem. 2003;278(7):5300-8. doi: 10.1074/jbc.M206333200. »https://doi.org/10.1074/jbc.M206333200.

Chawhuaveang DD, Yu OY, Yin IX, Lam WY, Mei ML, Chu CH. Acquired salivary pellicle and oral diseases: a literature review. J Dent Sci. 2021;16(1):523-9. doi: 10.1016/j.jds.2020.10.007. »https://doi.org/10.1016/j.jds.2020.10.007.

Hay DI. The interaction of human parotid salivary proteins with hydroxyapatite. Arch Oral Biol. 1973;18(12):1517-29. doi: 10.1016/0003-9969(73)90127-1. »https://doi.org/10.1016/0003-9969(73)90127-1.

Siqueira WL, Custodio W, McDonald EE. New insights into the composition and functions of the acquired enamel pellicle. J Dent Res. 2012;91(12):1110-8. doi: 10.1177/0022034512462578. »https://doi.org/10.1177/0022034512462578.

Araújo TT, Carvalho TS, Dionizio A, Debortolli AL, Ventura TM, Souza BM, et al. Protein-based engineering of the initial acquired enamel pellicle in vivo: proteomic evaluation. J Dent. 2022;116:103874. doi: 10.1016/j.jdent.2021.103874. » https://doi.org/10.1016/j.jdent.2021.103874.

Lendenmann U, Grogan J, Oppenheim FG. Saliva and dental pellicle: a review. Adv Dent Res. 2000;14:22-8. doi: 10.1177/08959374000140010301. »https://doi.org/10.1177/08959374000140010301.

Ventura TM, Cassiano LP, Silva CM, Taira EA, Leite AL, Rios D, et al. The proteomic profile of the acquired enamel pellicle according to its location in the dental arches. Arch Oral Biol. 2017;79:20-9. doi: 10.1016/j.archoralbio.2017.03.001. » https://doi.org/10.1016/j.archoralbio.2017.03.001.

Rüdiger SG, Carlén A, Meurman JH, Kari K, Olsson J. Dental biofilms at healthy and inflamed gingival margins. J Clin Periodontol. 2002;29(6):524-30. doi: 10.1034/j.1600-051x.2002.290609.x. »https://doi.org/10.1034/j.1600-051x.2002.290609.x.

Vukosavljevic D, Custodio W, Buzalaf MA, Hara AT, Siqueira WL. Acquired pellicle as a modulator for dental erosion. Arch Oral Biol. 2014;59(6):631-8. doi: 10.1016/j.archoralbio.2014.02.002. »https://doi.org/10.1016/j.archoralbio.2014.02.002.

Hannig M, Hannig C. The pellicle and erosion. Monogr Oral Sci. 2014;25:206-14. doi: 10.1159/000360376. » https://doi.org/10.1159/000360376.

Hannig M, Joiner A. The structure, function and properties of the acquired pellicle. Monogr Oral Sci. 2006;19:29-64. doi: 10.1159/000090585. »https://doi.org/10.1159/000090585.

Hannig C, Berndt D, Hoth W, Hannig M. The effect of acidic beverages on the ultrastructure of the acquired pellicle: an in situ study. Arch Oral Biol. 2009;54(6):518-26. doi: 10.1016/j.archoralbio.2009.02.009. »https://doi.org/10.1016/j.archoralbio.2009.02.009.

Trautmann S, Künzel N, Fecher-Trost C, Barghash A, Schalkowsky P, Dudek J, et al. Deep proteomic insights into the individual short-term pellicle formation on enamel: an in situ pilot study. Proteomics Clin Appl. 2020;14(3):e1900090. doi: 10.1002/prca.201900090. » https://doi.org/10.1002/prca.201900090.

Delecrode TR, Siqueira WL, Zaidan FC, Bellini MR, Moffa EB, Mussi MC, et al. Identification of acid-resistant proteins in acquired enamel pellicle. J Dent. 2015;43(12):1470-5. doi: 10.1016/j.jdent.2015.10.009. »https://doi.org/10.1016/j.jdent.2015.10.009.

Taira EA, Ventura TM, Cassiano LP, Silva CM, Martini T, Leite AL, et al. Changes in the proteomic profile of acquired enamel pellicles as a function of their time of formation and hydrochloric acid exposure. Caries Res. 2018;52(5):367-77. doi: 10.1159/000486969. »https://doi.org/10.1159/000486969.

Martini T, Rios D, Cassiano LP, Silva CM, Taira EA, Ventura TM, et al. Proteomics of acquired pellicle in gastroesophageal reflux disease patients with or without erosive tooth wear. J Dent. 2019;81:64-9. doi: 10.1016/j.jdent.2018.12.007. » https://doi.org/10.1016/j.jdent.2018.12.007.

Araujo TT, Camiloti GD, Valle AD, Silva ND, Souza BM, Carvalho TS, et al. A sugarcane cystatin (CaneCPI-5) alters microcosm biofilm formation and reduces dental caries. Biofouling. 2021;37(1):109-16. doi: 10.1080/08927014.2021.1881065. » https://doi.org/10.1080/08927014.2021.1881065.

Carvalho TS, Araújo TT, Ventura TM, Dionizio A, Câmara JV, Moraes SM, et al. Acquired pellicle protein-based engineering protects against erosive demineralization. J Dent. 2020;102:103478. doi: 10.1016/j.jdent.2020.103478. »https://doi.org/10.1016/j.jdent.2020.103478.

Siqueira WL, Bakkal M, Xiao Y, Sutton JN, Mendes FM. Quantitative proteomic analysis of the effect of fluoride on the acquired enamel pellicle. PLoS One. 2012;7(8):e42204. doi: 10.1371/journal.pone.0042204. »https://doi.org/10.1371/journal.pone.0042204.

Zimmerman JN, Custodio W, Hatibovic-Kofman S, Lee YH, Xiao Y, Siqueira WL. Proteome and peptidome of human acquired enamel pellicle on deciduous teeth. Int J Mol Sci. 2013;14(1):920-34. doi: 10.3390/ijms14010920. »https://doi.org/10.3390/ijms14010920.

Reich M, Hannig C, Al-Ahmad A, Bolek R, Kümmerer K. A comprehensive method for determination of fatty acids in the initial oral biofilm (pellicle). J Lipid Res. 2012;53(10):2226-30. doi: 10.1194/jlr.D026260. »https://doi.org/10.1194/jlr.D026260.

Reich M, Kümmerer K, Al-Ahmad A, Hannig C. Fatty acid profile of the initial oral biofilm (pellicle): an in-situ study. Lipids. 2013;48(9):929-37. doi: 10.1007/s11745-013-3822-2. »https://doi.org/10.1007/s11745-013-3822-2.

Ionta FQ, Alencar CR, Val PP, Boteon AP, Jordão MC, Honório HM, et al. Effect of vegetable oils applied over acquired enamel pellicle on initial erosion. J Appl Oral Sci. 2017;25(4):420-6. doi: 10.1590/1678-7757-2016-0436. »https://doi.org/10.1590/1678-7757-2016-0436.

Baek JH, Krasieva T, Tang S, Ahn Y, Kim CS, Vu D, et al. Optical approach to the salivary pellicle. J Biomed Opt. 2009;14(4):044001. doi: 10.1117/1.3158994. »https://doi.org/10.1117/1.3158994.

Güth-Thiel S, Kraus-Kuleszka I, Mantz H, Hoth-Hannig W, Hähl H, Dudek J, et al. Comprehensive measurements of salivary pellicle thickness formed at different intraoral sites on Si wafers and bovine enamel. Colloids Surf B Biointerfaces. 2019;174:246-51. doi: 10.1016/j.colsurfb.2018.11.020. »https://doi.org/10.1016/j.colsurfb.2018.11.020.

Carlén A, Börjesson AC, Nikdel K, Olsson J. Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Res. 1998;32(6):447-55. doi: 10.1159/000016486. »https://doi.org/10.1159/000016486.

Amaechi BT, Higham SM, Edgar WM, Milosevic A. Thickness of acquired salivary pellicle as a determinant of the sites of dental erosion. J Dent Res. 1999;78(12):1821-8. doi: 10.1177/00220345990780120901. »https://doi.org/10.1177/00220345990780120901.

Mutahar M, Bartlett D, Carpenter G, Moazzez R. Proteins from whole mouth saliva mediate greater protection against severe erosive tooth wear than proteins from parotid saliva using an in vitro model. J Dent. 2020;95:103319. doi: 10.1016/j.jdent.2020.103319

» https://doi.org/10.1016/j.jdent.2020.103319.

Baumann T, Kozik J, Lussi A, Carvalho TS. Erosion protection conferred by whole human saliva, dialysed saliva, and artificial saliva. Sci Rep. 2016;6:34760. doi: 10.1038/srep34760. » https://doi.org/10.1038/srep34760.

Proctor GB. The physiology of salivary secretion. Periodontol 2000. 2016 Feb;70(1):11-25. doi: 10.1111/prd.12116. » https://doi.org/10.1111/prd.12116.

Zheng L, Seon YJ, McHugh J, Papagerakis S, Papagerakis P. Clock genes show circadian rhythms in salivary glands. J Dent Res. 2012;91(8):783-8. doi: 10.1177/0022034512451450. »https://doi.org/10.1177/0022034512451450.

Dawes C. Circadian rhythms in the flow rate and composition of unstimulated and stimulated human submandibular saliva. J Physiol. 1975;244(2):535-48. doi: 10.1113/jphysiol.1975.sp010811. »https://doi.org/10.1113/jphysiol.1975.sp010811.

Van Nieuw Amerongen A, Bolscher JG, Veerman EC. Salivary proteins: protective and diagnostic value in cariology? Caries Res. 2004;38(3):247-53. doi: 10.1159/000077762. »https://doi.org/10.1159/000077762.

Luo J, Wang Y, Wang K, Jiang W, Li X, Zhang L. Comparative proteomic analysis on acquired enamel pellicle at two time points in caries-susceptible and caries-free subjects. J Dent. 2020;94:103301. doi: 10.1016/j.jdent.2020.103301 » https://doi.org/10.1016/j.jdent.2020.103301.

Siqueira WL, Helmerhorst EJ, Zhang W, Salih E, Oppenheim FG. Acquired enamel pellicle and its potential role in oral diagnostics. Ann N Y Acad Sci. 2007;1098:504-9. doi: 10.1196/annals.1384.023. »https://doi.org/10.1196/annals.1384.023.

Armstrong WG. The composition of organic films formed on human teeth. Caries Res. 1967;1(2):89-103. doi: 10.1159/000259504

»https://doi.org/10.1159/000259504.

Deimling D, Breschi L, Hoth-Hannig W, Ruggeri A, Hannig C, Nekrashevych Y, et al. Electron microscopic detection of salivary alpha-amylase in the pellicle formed in situ. Eur J Oral Sci. 2004;112(6):503-9. doi: 10.1111/j.1600-0722.2004.00168.x »https://doi.org/10.1111/j.1600-0722.2004.00168.x.

Leinonen J, Kivelä J, Parkkila S, Parkkila AK, Rajaniemi H. Salivary carbonic anhydrase isoenzyme VI is located in the human enamel pellicle. Caries Res. 1999;33(3):185-90. doi: 10.1159/000016515. »https://doi.org/10.1159/000016515.

Gregoire S, Xiao J, Silva BB, Gonzalez I, Agidi PS, Klein MI, et al. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl Environ Microbiol. 2011;77(18):6357-67. doi: 10.1128/AEM.05203-11. »https://doi.org/10.1128/AEM.05203-11.

Siqueira WL, Margolis HC, Helmerhorst EJ, Mendes FM, Oppenheim FG. Evidence of intact histatins in the in vivo acquired enamel pellicle. J Dent Res. 2010;89(6):626-30. doi: 10.1177/0022034510363384. »https://doi.org/10.1177/0022034510363384.

Li J, Helmerhorst EJ, Troxler RF, Oppenheim FG. Identification of in vivo pellicle constituents by analysis of serum immune responses. J Dent Res. 2004;83(1):60-4. doi: 10.1177/154405910408300112. »https://doi.org/10.1177/154405910408300112.

Frenkel ES, Ribbeck K. Salivary mucins protect surfaces from colonization by cariogenic bacteria. Appl Environ Microbiol. 2015;81(1):332-8. doi: 10.1128/AEM.02573-14. »https://doi.org/10.1128/AEM.02573-14.

Hahn Berg IC, Lindh L, Arnebrant T. Intraoral lubrication of PRP-1, statherin and mucin as studied by AFM. Biofouling. 2004;20(1):65-70. doi: 10.1080/08927010310001639082. »https://doi.org/10.1080/08927010310001639082.

Lee YH, Zimmerman JN, Custodio W, Xiao Y, Basiri T, Hatibovic-Kofman S, et al. Proteomic evaluation of acquired enamel pellicle during in vivo formation. PLoS One. 2013;8(7):e67919. doi: 10.1371/journal.pone.0067919. » https://doi.org/10.1371/journal.pone.0067919

Helmerhorst EJ, Oppenheim FG. Saliva: a dynamic proteome. J Dent Res. 2007;86(8):680-93. doi: 10.1177/154405910708600802

»https://doi.org/10.1177/154405910708600802.

Nieuw Amerongen AV, Oderkerk CH, Driessen AA. Role of mucins from human whole saliva in the protection of tooth enamel against demineralization in vitro. Caries Res. 1987;21(4):297-309. doi: 10.1159/000261033. »https://doi.org/10.1159/000261033.

Pedersen AM, Belstrøm D. The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent. 2019;80 Suppl 1:S3-S12. doi: 10.1016/j.jdent.2018.08.010. »https://doi.org/10.1016/j.jdent.2018.08.010.

Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002;82(2):331-71. doi: 10.1152/physrev.00030.2001.

»https://doi.org/10.1152/physrev.00030.2001.

Hannig M, Fiebiger M, Güntzer M, Döbert A, Zimehl R, Nekrashevych Y. Protective effect of the in situ formed short-term salivary pellicle. Arch Oral Biol. 2004;49(11):903-10. doi: 10.1016/j.archoralbio.2004.05.008. »https://doi.org/10.1016/j.archoralbio.2004.05.008.

Oliveira BP, Buzalaf MA, Silva NC, Ventura TM, Toniolo J, Rodrigues JA. Proteomic profile of the acquired enamel pellicle of children with early childhood caries and caries-free children. Eur J Oral Sci. 2023;131(4):e12944. doi: 10.1111/eos.12944. » https://doi.org/10.1111/eos.12944.

Rüdiger SG, Dahlén G, Carlén A. Pellicle and early dental plaque in periodontitis patients before and after surgical pocket elimination. Acta Odontol Scand. 2012a;70(6):615-21. doi: 10.3109/00016357.2011.645061. »https://doi.org/10.3109/00016357.2011.645061.

Matczuk J, Zendzian-Piotrowska M, Maciejczyk M, Kurek K. Salivary lipids: a review. Adv Clin Exp Med. 2017;26(6):1021-9. doi: 10.17219/acem/63030. »https://doi.org/10.17219/acem/63030.

Peckys DB, DE Jonge N, Hannig M. Oil droplet formation on pellicle covered tooth surfaces studied with environmental scanning electron microscopy. J Microsc. 2019;274(3):158-67. doi: 10.1111/jmi.12794. »https://doi.org/10.1111/jmi.12794.

Slomiany BL, Murty VL, Zdebska E, Slomiany A, Gwozdzinski K, Mandel ID. Tooth surface-pellicle lipids and their role in the protection of dental enamel against lactic-acid diffusion in man. Arch Oral Biol. 1986;31(3):187-91. doi: 10.1016/0003-9969(86)90126-3. »https://doi.org/10.1016/0003-9969(86)90126-3.

Reich M, Hannig C, Hannig M, Kümmerer K, Kensche A. The lipid composition of the in situ pellicle. Arch Oral Biol. 2022;142:105493. doi: 10.1016/j.archoralbio.2022.105493. »https://doi.org/10.1016/j.archoralbio.2022.105493.

Enax J, Ganss B, Amaechi BT, Schulze Zur Wiesche E, Meyer F. The composition of the dental pellicle: an updated literature review. Front Oral Health. 2023;4:1260442. doi: 10.3389/froh.2023.1260442. »https://doi.org/10.3389/froh.2023.1260442.

Moreno EC, Kresak M, Hay DI. Adsorption thermodynamics of acidic proline-rich human salivary proteins onto calcium apatites. J Biol Chem. 1982;257(6):2981-9. 10.1016/S0021-9258(19)81061-X. »https://doi.org/10.1016/S0021-9258(19)81061-X.

Vassilakos N, Arnebrant T, Glantz PO. An in vitro study of salivary film formation at solid/liquid interfaces. Scand J Dent Res. 1993;101(3):133-7. doi: 10.1111/j.1600-0722.1993.tb01652.x. »https://doi.org/10.1111/j.1600-0722.1993.tb01652.x.

Hannig M, Balz M. Protective properties of salivary pellicles from two different intraoral sites on enamel erosion. Caries Res. 2001;35(2):142-8. doi: 10.1159/000047446 »https://doi.org/10.1159/000047446.

Hannig C, Spitzmüller B, Miller M, Hellwig E, Hannig M. Intrinsic enzymatic crosslinking and maturation of the in situ pellicle. Arch Oral Biol. 2008;53(5):416-22. doi: 10.1016/j.archoralbio.2007.12.003. »https://doi.org/10.1016/j.archoralbio.2007.12.003.

Hara AT, Zero DT. The caries environment: saliva, pellicle, diet, and hard tissue ultrastructure. Dent Clin North Am. 2010;54(3):455-67. doi: 10.1016/j.cden.2010.03.008. »https://doi.org/10.1016/j.cden.2010.03.008.

Schlueter N, Amaechi BT, Bartlett D, Buzalaf MA, Carvalho TS, Ganss C, et al. Terminology of erosive tooth wear: consensus report of a workshop organized by the ORCA and the Cariology Research Group of the IADR. Caries Res. 2020;54(1):2-6. doi: 10.1159/000503308

»https://doi.org/10.1159/000503308.

Cheaib Z, Lussi A. Impact of acquired enamel pellicle modification on initial dental erosion. Caries Res. 2011;45(2):107-12. doi: 10.1159/000324803. »https://doi.org/10.1159/000324803.

Cheaib Z, Rakmathulina E, Lussi A, Eick S. Impact of acquired pellicle modification on adhesion of early colonizers. Caries Res. 2015;49(6):626-32. doi: 10.1159/000442169. »https://doi.org/10.1159/000442169.

Nekrashevych Y, Schestakow A, Hoth-Hannig W, Hannig M. Influence of periodic milk or cream treatment on the anti-erosive potential of the acquired enamel pellicle. J Dent. 2021;115:103858. doi: 10.1016/j.jdent.2021.103858. »https://doi.org/10.1016/j.jdent.2021.103858.

Weber MT, Hannig M, Pötschke S, Höhne F, Hannig C. Application of plant extracts for the prevention of dental erosion: an in situ/in vitro study. Caries Res. 2015;49(5):477-87. doi: 10.1159/000431294. »https://doi.org/10.1159/000431294.

Niemeyer SH, Baumann T, Lussi A, Meyer-Lueckel H, Scaramucci T, Carvalho TS. Salivary pellicle modification with polyphenol-rich teas and natural extracts to improve protection against dental erosion. J Dent. 2021;105:103567. doi: 10.1016/j.jdent.2020.103567. » https://doi.org/10.1016/j.jdent.2020.103567.

Hannig C, Spitzmüller B, Hoth-Hannig W, Hannig M. Targeted immobilisation of lysozyme in the enamel pellicle from different solutions. Clin Oral Investig. 2011;15(1):65-73. doi: 10.1007/s00784-009-0357-2. »https://doi.org/10.1007/s00784-009-0357-2.

Carpenter G, Cotroneo E, Moazzez R, Rojas-Serrano M, Donaldson N, Austin R, et al. Composition of enamel pellicle from dental erosion patients. Caries Res. 2014;48(5):361-7. doi: 10.1159/000356973. »https://doi.org/10.1159/000356973.

Delecrode TR, Siqueira WL, Zaidan FC, Bellini MR, Leite AL, Xiao Y, et al. Exposure to acids changes the proteomic of acquired dentine pellicle. J Dent. 2015;43(5):583-8. doi: 10.1016/j.jdent.2015.02.001. »https://doi.org/10.1016/j.jdent.2015.02.001.

Moazzez R, Bartlett D. Intrinsic causes of erosion. Monogr Oral Sci. 2014;25:180-96. doi: 10.1159/000360369. » https://doi.org/10.1159/000360369.

Mosaddad SA, Tahmasebi E, Yazdanian A, Rezvani MB, Seifalian A, Yazdanian M, et al. Oral microbial biofilms: an update. Eur J Clin Microbiol Infect Dis. 2019;38(11):2005-19. doi: 10.1007/s10096-019-03641-9. »https://doi.org/10.1007/s10096-019-03641-9.

Kolenbrander PE. Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol. 2000;54:413-37. doi: 10.1146/annurev.micro.54.1.413. »https://doi.org/10.1146/annurev.micro.54.1.413.

Santiago AC, Khan ZN, Miguel MC, Gironda CC, Soares-Costa A, Pelá VT, et al. A new sugarcane cystatin strongly binds to dental enamel and reduces erosion. J Dent Res. 2017;96(9):1051-7. doi: 10.1177/0022034517712981. »https://doi.org/10.1177/0022034517712981.

Soares-Costa A, Beltramini LM, Thiemann OH, Henrique-Silva F. A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem Biophys Res Commun. 2002;296(5):1194-9. doi: 10.1016/s0006-291x(02)02046-6. » https://doi.org/10.1016/s0006-291x(02)02046-6.

Oliva ML, Carmona AK, Andrade SS, Cotrin SS, Soares-Costa A, Henrique-Silva F. Inhibitory selectivity of canecystatin: a recombinant cysteine peptidase inhibitor from sugarcane. Biochem Biophys Res Commun. 2004;320(4):1082-6. doi: 10.1016/j.bbrc.2004.06.053.

»https://doi.org/10.1016/j.bbrc.2004.06.053.

Pelá VT, Buzalaf MA, Niemeyer SH, Baumann T, Henrique-Silva F, Toyama D, et al. Acquired pellicle engineering with proteins/peptides: mechanism of action on native human enamel surface. J Dent. 2021;107:103612. doi: 10.1016/j.jdent.2021.103612. »https://doi.org/10.1016/j.jdent.2021.103612.

Gironda CC, Pelá VT, Henrique-Silva F, Delbem AC, Pessan JP, Buzalaf MAR. New insights into the anti-erosive property of a sugarcane-derived cystatin: different vehicle of application and potential mechanism of action. J Appl Oral Sci. 2022;30:e20210698. doi: 10.1590/1678-7757-2021-0698. »https://doi.org/10.1590/1678-7757-2021-0698.

Pelá VT, Ventura TM, Taira EA, Thomassian LT, Brito L, Matuhara YE, et al. Use of reflectometer Optipen to assess the preventive effect of a sugarcane cystatin on initial dental erosion in vivo. J Mech Behav Biomed Mater. 2023;141:105782. doi: 10.1016/j.jmbbm.2023.105782 »https://doi.org/10.1016/j.jmbbm.2023.105782.

Pelá VT, Gironda CC, Taira EA, Brito L, Pieretti JC, Seabra AB, et al. Different vehicles containing CaneCPI-5 reduce erosive dentin wear in situ. Clin Oral Investig. 2023;27(9):5559-68. doi: 10.1007/s00784-023-05175-z. »https://doi.org/10.1007/s00784-023-05175-z.

Pelá VT, Niemeyer SH, Baumann T, Levy FM, Henrique-Silva F, Lussi A, et al. Acquired pellicle engineering using a combination of organic (sugarcane cystatin) and inorganic (sodium fluoride) components against dental erosion. Caries Res. 2022;56(2):138-45. doi: 10.1159/000522490. » https://doi.org/10.1159/000522490.

Oliveira AA, Xavier AL, Silva TT, Debortolli AL, Ferdin AC, Boteon AP, et al. Acquired pellicle engineering with the association of cystatin and vitamin E against enamel erosion. J Dent. 2023;138:104680. doi: 10.1016/j.jdent.2023.104680. »https://doi.org/10.1016/j.jdent.2023.104680.

Ferreira BA, Toyama D, Henrique-Silva F, Araújo FA. Recombinant sugarcane cystatin CaneCPI-5 down regulates inflammation and promotes angiogenesis and collagen deposition in a mouse subcutaneous sponge model. Int Immunopharmacol. 2021;96:107801. doi: 10.1016/j.intimp.2021.107801. »https://doi.org/10.1016/j.intimp.2021.107801.

Ha SD, Martins A, Khazaie K, Han J, Chan BM, Kim SO. Cathepsin B is involved in the trafficking of TNF-alpha-containing vesicles to the plasma membrane in macrophages. J Immunol. 2008;181(1):690-7. doi: 10.4049/jimmunol.181.1.690 »https://doi.org/10.4049/jimmunol.181.1.690.

Campden RI, Zhang Y. The role of lysosomal cysteine cathepsins in NLRP3 inflammasome activation. Arch Biochem Biophys. 2019;670:32-42. doi: 10.1016/j.abb.2019.02.015. »https://doi.org/10.1016/j.abb.2019.02.015.

Pelá VT, Lunardelli JG, Tokuhara CK, Gironda CC, Silva ND, Carvalho TS, et al. Safety and in situ antierosive effect of CaneCPI-5 on dental enamel. J Dent Res. 2021;100(12):1344-50. doi: 10.1177/00220345211011590. »https://doi.org/10.1177/00220345211011590.

Kawasaki T, Takahashi S, Ikeda K. Hydroxyapatite high-performance liquid chromatography: column performance for proteins. Eur J Biochem. 1985;152(2):361-71. doi: 10.1111/j.1432-1033.1985.tb09206.x. »https://doi.org/10.1111/j.1432-1033.1985.tb09206.x.

Yu YD, Zhu YJ, Qi C, Jiang YY, Li H, Wu J. Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers. J Colloid Interface Sci. 2017;496:416-24. doi: 10.1016/j.jcis.2017.02.041. »https://doi.org/10.1016/j.jcis.2017.02.041.

Martini T, Rios D, Dionizio A, Cassiano LP, Pelá VT, E Silva CM, et al. Salivary hemoglobin protects against erosive tooth wear in gastric reflux patients. Caries Res. 2020;54(5-6):466-74. doi: 10.1159/000507110. »https://doi.org/10.1159/000507110.

Araujo TT, Carvalho TS, Dionizio A, Rodrigues CM, Henrique-Silva F, Chiaratti M, et al. Acquired pellicle and biofilm engineering by rinsing with hemoglobin solution. Caries Res. 2024;58(3):162-72. doi: 10.1159/000537976. »https://doi.org/10.1159/000537976.

Carvalho TS, Araújo TT, Ventura TM, Dionizio A, Câmara JV, Moraes SM, et al. Hemoglobin protects enamel against intrinsic enamel erosive demineralization. Caries Res. 2024;58(2):86-103. doi: 10.1159/000536200. »https://doi.org/10.1159/000536200.

Martini T, Rios D, Dionizio A, Cassiano LP, Silva CM, Taira EA, et al. Acquired enamel pellicle protects gastroesophageal reflux disease patients against erosive tooth wear. Braz Oral Res. 2023;37:e085. doi: 10.1590/1807-3107bor-2023.vol37.0085. »https://doi.org/10.1590/1807-3107bor-2023.vol37.0085.

Hermont AP, Oliveira PA, Martins CC, Paiva SM, Pordeus IA, Auad SM. Tooth erosion and eating disorders: a systematic review and meta-analysis. PLoS One. 2014;9(11):e111123. doi: 10.1371/journal.pone.0111123. »https://doi.org/10.1371/journal.pone.0111123.

Raj PA, Johnsson M, Levine MJ, Nancollas GH. Salivary statherin: dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. J Biol Chem. 1992;267(9):5968-76. doi: S0021-9258(18)42650-6. »https://doi.org/S0021-9258(18)42650-6.

Naganagowda GA, Gururaja TL, Levine MJ. Delineation of conformational preferences in human salivary statherin by 1H, 31P NMR and CD studies: sequential assignment and structure-function correlations. J Biomol Struct Dyn. 1998;16(1):91-107. doi: 10.1080/07391102.1998.10508230. »https://doi.org/10.1080/07391102.1998.10508230.

Shah S, Kosoric J, Hector MP, Anderson P. An in vitro scanning microradiography study of the reduction in hydroxyapatite demineralization rate by statherin-like peptides as a function of increasing N-terminal length. Eur J Oral Sci. 2011;119 Suppl 1:13-8. doi: 10.1111/j.1600-0722.2011.00899.x. »https://doi.org/10.1111/j.1600-0722.2011.00899.x.

Makrodimitris K, Masica DL, Kim ET, Gray JJ. Structure prediction of protein-solid surface interactions reveals a molecular recognition motif of statherin for hydroxyapatite. J Am Chem Soc. 2007;129(44):13713-22. doi: 10.1021/ja074602v. »https://doi.org/10.1021/ja074602v.

Mutahar M, O'Toole S, Carpenter G, Bartlett D, Andiappan M, Moazzez R. Reduced statherin in acquired enamel pellicle on eroded teeth compared to healthy teeth in the same subjects: an in-vivo study. PLoS One. 2017;12(8):e0183660. doi: 10.1371/journal.pone.0183660

» https://doi.org/10.1371/journal.pone.0183660.

Taira EA, Carvalho G, Ferrari CR, Martini T, Pelá VT, Ventura TM, et al. Statherin-derived peptide protects against intrinsic erosion. Arch Oral Biol. 2020;119:104890. doi: 10.1016/j.archoralbio.2020.104890. »https://doi.org/10.1016/j.archoralbio.2020.104890.

Taira EA, Ferrari CR, Carvalho G, Ventura TM, Martini T, Dionizio AS, et al. Rinsing with statherin-derived peptide alters the proteome of the acquired enamel pellicle. Caries Res. 2021;55(4):333-40. doi: 10.1159/000517959. »https://doi.org/10.1159/000517959.

Reis FN, Francese MM, Silva ND, Pelá VT, Câmara JV, Trevizol JS, et al. Solutions containing a statherin-derived peptide reduce enamel erosion in vitro. Caries Res. 2023;57(1):52-8. doi: 10.1159/000529016. »https://doi.org/10.1159/000529016.

Reis FN, Francese MM, Silva ND, Pelá VT, Câmara JV, Trevizol JS, et al. Gels containing statherin-derived peptide protect against enamel and dentin erosive tooth wear in vitro. J Mech Behav Biomed Mater. 2023;137:105549. doi: 10.1016/j.jmbbm.2022.105549.

»https://doi.org/10.1016/j.jmbbm.2022.105549.

Downloads

Published

2025-01-14

Issue

Section

Review

How to Cite

Ferrari, C. R., Hannig, M., & Buzalaf, M. A. R. (2025). Acquired pellicle engineering: a fascinating approach to prevent demineralization. Journal of Applied Oral Science, 33, e20240359. https://doi.org/10.1590/1678-7757-2024-0359