A comparative study of three liquid platelet concentrates on human primary osteoblast activity: an in vitro study

Authors

DOI:

https://doi.org/10.1590/

Keywords:

Platelet-rich fibrin, Platelet-rich plasma, Liquid platelet concentrates, Osteoblast, Wound healing

Abstract

Objective:  To investigate the effects of concentrated platelet-rich fibrin (C-PRF), injectable platelet-rich fibrin (i-PRF), and platelet-rich plasma (PRP) on cellular activity of human primary osteoblasts. Methodology:  C-PRF, i-PRF, and PRP were prepared from five donors and pre-cultured in 5 mL of culture medium for three days. Human primary osteoblasts were seeded and cultured with 20% conditioned medium derived from the three platelet concentrates. Then, osteoblast viability was assessed at 24 h; proliferation at one, three, and five days; differentiation at seven days; mineralization at 14 days; and gene expression RUNX family transcription factor 2 (RUNX2), alkaline phosphatase, biomineralization associated (ALPL), collagen type I alpha 1 chain (COL1A1), and osteocalcin (OCN) at three and 14 days were investigated. Results:  Osteoblasts cultured with C-PRF, i-PRF, and PRP demonstrated excellent biocompatibility. Proliferation was significantly higher in all platelet concentrates compared to the controls at one, three, and five days, with no significant differences among them, except on day one. Alkaline phosphatase and Alizarin Red S staining were significantly higher in the C-PRF and i-PRF groups compared to the PRP and control groups. However, RUNX2ALPLCOL1A1, and OCN mRNA levels did not differ significantly among the three platelet concentrates throughout the study period. Conclusion:  Our study indicates that the three liquid platelet concentrates enhance human osteoblast activity. C-PRF and i-PRF promoted greater differentiation and mineralization than PRP. These findings show that all liquid platelet concentrates positively influence human osteoblast proliferation and differentiation, making them suitable for clinical applications requiring bone regeneration.

Downloads

Download data is not yet available.

References

Quirynen M, Sculean A, Blanco J, Wang HL, Donos N. Introduction and overview on Autogenous Platelet Concentrates. Periodontol 2000. 2025;97(1):7-15. doi: 10.1111/prd.12607. »https://doi.org/10.1111/prd.12607.

Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(6):638-46. doi: 10.1016/s1079-2104(98)90029-4. »https://doi.org/10.1016/s1079-2104(98)90029-4.

Oneto P, Etulain J. PRP in wound healing applications. Platelets. 2021;32(2):189-99. doi: 10.1080/09537104.2020.1849605.

»https://doi.org/10.1080/09537104.2020.1849605.

Everts P, Onishi K, Jayaram P, Lana JF, Mautner K. Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020. Int J Mol Sci. 2020;21(20):7794. doi: 10.3390/ijms21207794. »https://doi.org/10.3390/ijms21207794.

Choukroun J, Adda F, Schoeffler C, Vervelle A. Une opportunite' en paro-implantologie: Le PRF. [The opportunity in perio-implantology: the PRF] Implantodontie. 2001;42:55-62. French.

Castro AB, Andrade C, Li X, Pinto N, Teughels W, Quirynen M. Impact of g force and timing on the characteristics of platelet-rich fibrin matrices. Sci Rep. 2021;11(1):6038. doi: 10.1038/s41598-021-85736-y. »https://doi.org/10.1038/s41598-021-85736-y.

Bartold M, Ivanovski S. Biological processes and factors involved in soft and hard tissue healing. Periodontol 2000. 2025;97(1):16-42. doi: 10.1111/prd.12546. »https://doi.org/10.1111/prd.12546.

Calciolari E, Dourou M, Akcali A, Donos N. Differences between first- and second-generation autologous platelet concentrates. Periodontol 2000. 2025;97(1):52-73. doi: 10.1111/prd.12550. »https://doi.org/10.1111/prd.12550.

Fujioka-Kobayashi M, Zhang Y, Gruber R, Miron RJ. Biology of PRF: fibrin matrix, growth factor release, and cellular activity. In Miron RJ, editor. Understanding platelet rich fibrin. Illinois: Quintessence Publishing; 2021. p. 11-50.

Choukroun J, Ghanaati S. Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients' own inflammatory cells, platelets and growth factors: the first introduction to the low speed centrifugation concept. Eur J Trauma Emerg Surg. 2018;44(1):87-95. doi: 10.1007/s00068-017-0767-9. »https://doi.org/10.1007/s00068-017-0767-9.

Wend S, Kubesch A, Orlowska A, Al-Maawi S, Zender N, Dias A, et al. Reduction of the relative centrifugal force influences cell number and growth factor release within injectable PRF-based matrices. J Mater Sci Mater Med. 2017;28(12):188. doi: 10.1007/s10856-017-5992-6.

»https://doi.org/10.1007/s10856-017-5992-6.

Miron RJ, Gruber R, Farshidfar N, Sculean A, Zhang Y. Ten years of injectable platelet-rich fibrin. Periodontol 2000. 2024;94(1):92-113. doi: 10.1111/prd.12538. »https://doi.org/10.1111/prd.12538.

Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron RJ. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets. 2018;29(1):48-55. doi: 10.1080/09537104.2017.1293807. »https://doi.org/10.1080/09537104.2017.1293807.

Fernández-Medina T, Vaquette C, Ivanovski S. Systematic comparison of the effect of four clinical-grade platelet rich hemoderivatives on osteoblast behaviour. Int J Mol Sci. 2019;20(24):6243. doi: 10.3390/ijms20246243. »https://doi.org/10.3390/ijms20246243.

Miron RJ, Chai J, Zheng S, Feng M, Sculean A, Zhang Y. A novel method for evaluating and quantifying cell types in platelet rich fibrin and an introduction to horizontal centrifugation. J Biomed Mater Res A. 2019;107(10):2257-71. doi: 10.1002/jbm.a.36734. »https://doi.org/10.1002/jbm.a.36734.

Miron RJ, Chai J, Zhang P, Li Y, Wang Y, Mourão CF, et al. A novel method for harvesting concentrated platelet-rich fibrin (C-PRF) with a 10-fold increase in platelet and leukocyte yields. Clin Oral Investig. 2020;24(8):2819-28. doi: 10.1007/s00784-019-03147-w. »https://doi.org/10.1007/s00784-019-03147-w.

Fujioka-Kobayashi M, Katagiri H, Kono M, Schaller B, Zhang Y, Sculean A, et al. Improved growth factor delivery and cellular activity using concentrated platelet-rich fibrin (C-PRF) when compared with traditional injectable (i-PRF) protocols. Clin Oral Investig. 2020;24(12):4373-83. doi: 10.1007/s00784-020-03303-7. »https://doi.org/10.1007/s00784-020-03303-7.

Kyyak S, Blatt S, Schiegnitz E, Heimes D, Staedt H, Thiem DG, et al. Activation of human osteoblasts via different bovine bone substitute materials with and without injectable platelet rich fibrin in vitro Front Bioeng Biotechnol. 2021;9:599224. doi: 10.3389/fbioe.2021.599224

»https://doi.org/10.3389/fbioe.2021.599224.

Kosmidis K, Ehsan K, Pitzurra L, Loos B, Jansen I. An in vitro study into three different PRF preparations for osteogenesis potential. J Periodontal Res. 2023;58(3):483-92. doi: 10.1111/jre.13116. »https://doi.org/10.1111/jre.13116.

Thanai-nopparat N, Makeudom A, Khongkhunthian S, Supanchart C, Krisanaprakornkit S, Montreekachon P. Proliferative and differentiative effects of cannabidiol in primary human osteoblasts. J Agri Prod. 2023;5(1):120-34.

Czekanska EM, Stoddart MJ, Richards RG, Hayes JS. In search of an osteoblast cell model for in vitro research. Eur Cell Mater. 2012;24:1-17. doi: 10.22203/ecm.v024a01. »https://doi.org/10.22203/ecm.v024a01.

Gregory CA, Gunn WG, Peister A, Prockop DJ. An alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329(1):77-84. doi: 10.1016/j.ab.2004.02.002. »https://doi.org/10.1016/j.ab.2004.02.002.

Ogino Y, Ayukawa Y, Kukita T, Koyano K. The contribution of platelet-derived growth factor, transforming growth factor-beta1, and insulin-like growth factor-I in platelet-rich plasma to the proliferation of osteoblast-like cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(6):724-9. doi: 10.1016/j.tripleo.2005.08.016. »https://doi.org/10.1016/j.tripleo.2005.08.016.

Miron RJ, Fujioka-Kobayashi M, Hernandez M, Kandalam U, Zhang Y, Ghanaati S, et al. Injectable platelet rich fibrin (i-PRF): opportunities in regenerative dentistry? Clin Oral Investig. 2017;21(8):2619-27. doi: 10.1007/s00784-017-2063-9. »https://doi.org/10.1007/s00784-017-2063-9.

Schmid C, Steiner T, Froesch ER. Insulin-like growth factor I supports differentiation of cultured osteoblast-like cells. FEBS Lett. 1984;173(1):48-52. doi: 10.1016/0014-5793(84)81015-7. »https://doi.org/10.1016/0014-5793(84)81015-7.

Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch. 2010;77(1):4-12. doi: 10.1272/jnms.77.4. »https://doi.org/10.1272/jnms.77.4.

Banfi G, Salvagno GL, Lippi G. The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin Chem Lab Med. 2007;45(5):565-76. doi: 10.1515/CCLM.2007.110. »https://doi.org/10.1515/CCLM.2007.110.

Komori T. Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol. 2010;658:43-9. doi: 10.1007/978-1-4419-1050-9_5.

» https://doi.org/10.1007/978-1-4419-1050-9_5.

Karsenty G, Park RW. Regulation of type I collagen genes expression. Int Rev Immunol. 1995;12(2-4):177-85. doi: 10.3109/08830189509056711. »https://doi.org/10.3109/08830189509056711.

Hauschka PV, Wians FH Jr. Osteocalcin-hydroxyapatite interaction in the extracellular organic matrix of bone. Anat Rec. 1989;224(2):180-8. doi: 10.1002/ar.1092240208. »https://doi.org/10.1002/ar.1092240208.

Marie PJ, Debiais F, Haÿ E. Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling. Histol Histopathol. 2002;17(3):877-85. doi: 10.14670/HH-17.877. »https://doi.org/10.14670/HH-17.877.

Quirynen M, Siawasch S, Temmerman A, Cortellini S, Dhondt R, Teughels W, et al. Do autologous platelet concentrates (APCs) have a role in intra-oral bone regeneration? A critical review of clinical guidelines on decision-making process. Periodontol 2000. 2023;93(1):254-69. doi: 10.1111/prd.12526. »https://doi.org/10.1111/prd.12526.

Lahham C, Ta'a MA, Lahham E, Michael S, Zarif W. The effect of recurrent application of concentrated platelet-rich fibrin inside the extraction socket on the hard and soft tissues. a randomized controlled trial. BMC Oral Health. 2023;23(1):677. doi: 10.1186/s12903-023-03400-5. »https://doi.org/10.1186/s12903-023-03400-5.

Kargarpour Z, Nasirzade J, Panahipour L, Miron RJ, Gruber R. Liquid platelet-rich fibrin and heat-coagulated albumin gel: bioassays for TGF-β Activity. Materials (Basel). 2020;13(16):3466. doi: 10.3390/ma13163466. »https://doi.org/10.3390/ma13163466.

Kargarpour Z, Nasirzade J, Panahipour L, Miron RJ, Gruber R. Liquid PRF reduces the inflammatory response and osteoclastogenesis in murine macrophages. Front Immunol. 2021;12:636427. doi: 10.3389/fimmu.2021.636427. »https://doi.org/10.3389/fimmu.2021.636427.

Miron RJ, Chai J, Fujioka-Kobayashi M, Sculean A, Zhang Y. Evaluation of 24 protocols for the production of platelet-rich fibrin. BMC Oral Health. 2020;20(1):310. doi: 10.1186/s12903-020-01299-w. »https://doi.org/10.1186/s12903-020-01299-w.

Abd El Raouf M, Wang X, Miusi S, Chai J, Mohamed AbdEl-Aal AB, Nefissa Helmy MM, et al. Injectable-platelet rich fibrin using the low speed centrifugation concept improves cartilage regeneration when compared to platelet-rich plasma. Platelets. 2019;30(2):213-21. doi: 10.1080/09537104.2017.1401058. »https://doi.org/10.1080/09537104.2017.1401058.

Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron RJ. Behavior of gingival fibroblasts on titanium implant surfaces in combination with either injectable-PRF or PRP. Int J Mol Sci. 2017;18(2):331. doi: 10.3390/ijms18020331. »https://doi.org/10.3390/ijms18020331.

Downloads

Published

2025-01-14

Issue

Section

Original Articles

How to Cite

Chattrathikul, V., Pinthonglor, P., Supanchart, C., & Sangin, S. (2025). A comparative study of three liquid platelet concentrates on human primary osteoblast activity: an in vitro study. Journal of Applied Oral Science, 33, e20240575. https://doi.org/10.1590/