Effect of ibuprofen on amelogenesis in Wistar rats

Authors

DOI:

https://doi.org/10.1590/

Keywords:

Molar hypomineralization, Animal Model, Ibuprofen, Amelogenesis

Abstract

This work aimed to evaluate the effect of ibuprofen on amelogenesis using a model of continuously growing incisors in Wistar rats. Methodology  A total of eight female Wistar rats at weaning age were assigned to one of two groups (IBU and control). They were administered an 80 mg/kg dose of ibuprofen or an equivalent volume of distilled water for three weeks, then euthanized on day 16 of the experiment. Right hemimandibles were used to assess the mineral density of enamel using microtomography. The left hemimandibles were decalcified and processed to obtain sections, stained with Hematoxylin Eosin or immunohistochemical detection of amelogenin. Based on photomicrographs of hemimandibles, ameloblast and papillary layer height of the enamel and enamel organic matrix width were determined. The percentage of positive amelogenin was determined in immunohistochemically processed sections. Results were analyzed using Student’s t test. Results  IBU-treated animals showed lower body weight gain throughout the experiment (p<0.05). Mineral density and enamel thickness showed no significant differences. No significant differences in the height of the papillary layer or the width of the organic matrix were observed. Amelogenin expression in the ameloblast layer was lower in the experimental group. No significant difference was found between groups. Conclusion  The results obtained in this study model suggest that ibuprofen itself might not alter the amelogenesis process.

Downloads

Download data is not yet available.

References

- Weerheijm KL, Jälevik B, Alaluusua S. Molar-incisor hypomineralisation. Caries Res. 2001; 35 (5):390-91. doi: 10.1159/000047479

» https://doi.org/10.1159/000047479

- Lopes LB, Machado V, Mascarenhas P, Mendes JJ, Botelho J. The prevalence of molar-incisor hypomineralization: a systematic review and meta-analysis. Sci Rep. 2021;11(1):22405. doi: 10.1038/s41598-021-01541-7

» https://doi.org/10.1038/s41598-021-01541-7

- Garot E, Rouas P, Somani C, Taylor GD, Wong F, Lygidakis NA. An update of the aetiological factors involved in molar incisor hypomineralisation (MIH): a systematic review and meta-analysis. Eur Arch Paediatr Dent. 2022;23(1):23-38. doi: 10.1007/s40368-021-00646-x

» https://doi.org/10.1007/s40368-021-00646-x

- Nanci A, editor. Ten Cate's oral histology: development, structure, and function. 9th ed. St. Louis: Mosby; 2016.

- Smith CE. Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med. 1998;9(2):128-61. doi: 10.1177/10454411980090020101

» https://doi.org/10.1177/10454411980090020101

- Crombie F, Manton D, Kilpatrick N. Aetiology of molar-incisor hypomineralization: a critical review. Int J Pediatr Res. 2009;19(2):73-83. doi: 10.1111/j.1365-263X.2008.00966.x

» https://doi.org/10.1111/j.1365-263X.2008.00966.x

- Elhennawy K, Manton DJ, Crombie F, Zaslansky P, Radlanski RJ, Jost-Brinkmann PG, et al. Structural, mechanical and chemical evaluation of molar-incisor hypomineralization-affected enamel: a systematic review. Arch Oral Biol. 2017;83:272-81. doi: 10.1016/j.archoralbio.2017.08.008

» https://doi.org/10.1016/j.archoralbio.2017.08.008

- Smith CE, Nanci A, Denbesten PK. Effects of chronic fluoride exposure on morphometric parameters defining the stages of amelogenesis and ameloblast modulation in rat incisors. Anat Rec. 1993; 237(2):243-58. doi: 10.1002/ar.1092370212

» https://doi.org/10.1002/ar.1092370212

- Jedeon K, De la Dure-Molla M, Brookes SJ, Loiodice S, Marciano C, Kirkham J, et al. Enamel defects reflect perinatal exposure to bisphenol A. Am J Pathol. 2013;183(1):108-18. doi: 10.1016/j.ajpath.2013.04.004

» https://doi.org/10.1016/j.ajpath.2013.04.004

- Li H, Cui D, Zheng L, Zhou Y, Gan L, Liu Y, et al. Bisphenol A exposure disrupts enamel formation via EZH2-Mediated H3K27me3. J Dent Res. 2021;100(8):847-57. doi: 10.1177/0022034521995798

» https://doi.org/10.1177/0022034521995798

- Souza JF, Gramasco, M, Jeremias F, Santos-Pinto L, Giovanini AF, Cerri PS, et al. Amoxicillin diminishes the thickness of the enamel matrix that is deposited during the secretory stage in rats. Int J Paediatr Dent. 2016;26(3):199-210. doi: 10.1111/ipd.12184

» https://doi.org/10.1111/ipd.12184

- Feltrin-Souza J, Jeremias F, Alaluusua S, Sahlberg C, Santos-Pinto L, Jernvall J, et al. The effect of amoxicillin on dental enamel development in vivo. Braz Oral Res. 2020;34:e116. doi: 10.1590/1807-3107bor-2020.vol34.0116

» https://doi.org/10.1590/1807-3107bor-2020.vol34.0116

- Feltrin-Souza J, Costa SA, Bussaneli DG, Santos-Pinto L, Cerri PS, Cury J, et al. In vivo effect of fluoride combined with amoxicillin on enamel development in rats. J Appl Oral Sci. 2021;29:e20210171. doi: 10.1590/1678-7757-2021-0171

» https://doi.org/10.1590/1678-7757-2021-0171

- Serna Muñoz C, Pérez Silva A, Solano F, Castells MT, Vicente A, Ortiz Ruiz AJ. Effect of antibiotics and NSAIDs on cyclooxygenase-2 in the enamel mineralization. Sci Rep. 2018; 8(1):4132. doi: 10.1038/s41598-018-22607-z

» https://doi.org/10.1038/s41598-018-22607-z

- Rainsford KD. Ibuprofen: pharmacology, efficacy and safety. Inflammopharmacology. 2009;17(6):275-342. doi: 10.1007/s10787-009-0016-x

» https://doi.org/10.1007/s10787-009-0016-x

- Brookes SJ. Using ImageJ (Fiji) to analyze and present X-Ray CT images of enamel. Methods Mol Biol. 2019;1922:267-91. doi: 10.1007/978-1-4939-9012-2_26

» https://doi.org/10.1007/978-1-4939-9012-2_26

- Trippella G, Ciarcià M, Martino M, Chiappini E. Prescribing controversies: an updated review and meta-Analysis on combined/alternating use of Ibuprofen and Paracetamol in febrile children. Front Pediatr. 2019;7:217. doi: 10.3389/fped.2019.00217

» https://doi.org/10.3389/fped.2019.00217

- Alaluusua S. Aetiology of molar-incisor hypomineralisation: a systematic review. Eur Arch Paediatr Dent. 2010;11(2):53-8. doi: 10.1007/BF03262713

» https://doi.org/10.1007/BF03262713

- Chiappini E, Bortone B, Galli L, Martino M. Guidelines for the symptomatic management of fever in children: systematic review of the literature and quality appraisal with AGREE II. BMJ open. 2017;7(7):e015404. doi: 10.1136/bmjopen-2016-015404

» https://doi.org/10.1136/bmjopen-2016-015404

- Vernacchio L, Kelly JP, Kaufman DW, Mitchell AA. Medication use among children <12 years of age in the United States: results from the Slone Survey. Pediatrics. 2009;124(2):446-54. doi: 10.1542/peds.2008-2869

» https://doi.org/10.1542/peds.2008-2869

- Crocetti M, Moghbeli N, Serwint J. Fever phobia revisited: have parental misconceptions about fever changed in 20 years? Pediatrics. 2001.107(6):1241-6. doi: 10.1542/peds.107.6.1241

» https://doi.org/10.1542/peds.107.6.1241

- Foley PL, Kendall LV, Turner PV. Clinical management of pain in rodents. Comp Med. 2019;69(6):468-89. doi: 10.30802/AALAS-CM-19-000048

» https://doi.org/10.30802/AALAS-CM-19-000048

- Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27-31. doi: 10.4103/0976-0105.177703

» https://doi.org/10.4103/0976-0105.177703

- Adams SS, Bough RG, Cliffe EE, Lessel B, Mills RF. Absorption, distribution and toxicity of ibuprofen. Toxicol Appl Pharmacol. 1969;15(2):310-30. doi: 10.1016/0041-008x(69)90032-5

» https://doi.org/10.1016/0041-008x(69)90032-5

- Wen C, Zhuang Z, Song H, Tong S, Wang X, Lin Y, et al. Metabolism of liver CYP450 and ultrastructural changes after long-term administration of aspirin and ibuprofen. Biomed Pharmacother. 2018;108:208-15. doi: 10.1016/j.biopha.2018.08.162

» https://doi.org/10.1016/j.biopha.2018.08.162

- Kimura RE, Dy SA, Uhing MR, Beno DW, Jiyamapa VA, Lloyd-Still JD. The effects of high-dose ibuprofen and pancreatic enzymes on the intestine of the rat. J Pediatr Gastroenterol Nutr.1999;29(2):178-83. doi: 10.1097/00005176-199908000-00014

» https://doi.org/10.1097/00005176-199908000-00014

- Bastaki SMA, Padol IT, Amir N, Hunt RH. Effect of aspirin and ibuprofen either alone or in combination on gastric mucosa and bleeding time and on serum prostaglandin E 2 and thromboxane A 2 levels in the anaesthetized rats in vivo. Mol Cell Biochem. 2018;438(1-2):25-34. doi: 10.1007/s11010-017-3110-1

» https://doi.org/10.1007/s11010-017-3110-1

- Schour I, Massler M. The teeth. In: Farris EJ, Griffith JQ, editors. The rat in the laboratory investigation. Philadelphia: Lippincott Company; 1942. p. 104-65.

- Warshawsky H, Josephsen K, Thylstrup A, Fejerskov O. The development of enamel structure in rat incisors as compared to the teeth of monkey and man. Anat Rec. 1981; 200(4):371-99. doi: 10.1002/ar.1092000402

» https://doi.org/10.1002/ar.1092000402

- Pugach MK, Gibson CW. Analysis of enamel development using murine model systems: approaches and limitations. Front Physiol. 2014;5:313. doi: 10.3389/fphys.2014.00313

» https://doi.org/10.3389/fphys.2014.00313

- Bronckers AL, Lyaruu DM, DenBesten PK. The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. J Dent Res. 2009;88(10):877-93. doi: 10.1177/0022034509343280

» https://doi.org/10.1177/0022034509343280

- Addison WH, Appleton JL Jr. The structure and growth of the incisor teeth of the albino rat. J Morphol. 1915;26:43-96. doi: 10.1002/jmor.1050260103

» https://doi.org/10.1002/jmor.1050260103

- Zou W, Hunter N, Swain M. V. Application of polychromatic µCT for mineral density determination. J Dent Res. 2011;90(1):18-30. doi: 10.1177/0022034510378429

» https://doi.org/10.1177/0022034510378429

- Schmitz JE, Teepe JD, Hu Y, Smith CE, Fajardo RJ, Chun YH. Estimating mineral changes in enamel formation by ashing/BSE and microCT. J Dent Res. 2014;93(3):256-62. doi: 10.1177/0022034513520548.

» https://doi.org/10.1177/0022034513520548

- Fincham AG, Simmer JP. Amelogenin proteins of developing dental enamel. Ciba Found Symp.1997;205:118-34. doi: 10.1002/9780470515303.ch9

» https://doi.org/10.1002/9780470515303.ch9

- Li W, Gibson CW, Abrams WR, Andrews DW, DenBesten PK. Reduced hydrolysis of amelogenin may result in X-linked amelogenesis imperfecta. Matrix Biol. 2001;19(8):755-60. doi: 10.1016/s0945-053x(00)00121-9

» https://doi.org/10.1016/s0945-053x(00)00121-9

- DenBesten PK, Yan Y, Featherstone JD, Hilton JF, Smith CE, Li W. Effects of fluoride on rat dental enamel matrix proteinases. Arch Oral Biol. 2002; 47(11):763-70. doi: 10.1016/s0003-9969(02)00117-6

» https://doi.org/10.1016/s0003-9969(02)00117-6

- Nanci A, Slavkin HC, Smith CE. Immunocytochemical and radioautographic evidence for secretion and intracellular degradation of enamel proteins by ameloblasts during the maturation stage of amelogenesis in rat incisors. Anat Rec. 1987;217(2):107-23. doi: 10.1002/ar.1092170202

» https://doi.org/10.1002/ar.1092170202

- Inage T, Shimokawa H, Wakao K, Sasaki S. Gene expression and localization of amelogenin in the rat incisor. Adv Dent Res. 1996;10(2):201-7. doi: 10.1177/08959374960100021401

» https://doi.org/10.1177/08959374960100021401

- Jeremias F, Koruyucu M, Küchler EC, Bayram M, Tuna EB, Deeley K, et al. Genes expressed in dental enamel development are associated with molar-incisor hypomineralization. Arch Oral Biol. 2013;58(10):1434-42. doi: 10.1016/j.archoralbio.2013.05.005

» https://doi.org/10.1016/j.archoralbio.2013.05.005

- Hocevar L, Kovac J, Podkrajšek KT, Battelino S, Pavlic A. The possible influence of genetic aetiological factors on molar-incisor hypomineralisation. Arch Oral Biol. 2020;118:104848. doi: 10.1016/j.archoralbio.2020.104848

» https://doi.org/10.1016/j.archoralbio.2020.104848

- Hubbard MJ, Mangum JE, Perez VA, Nervo GJ, Hall RK. Molar hypomineralisation: a call to arms for enamel researchers. Front Physiol. 2017;8:546. doi: 10.3389/fphys.2017.00546

» https://doi.org/10.3389/fphys.2017.00546

Downloads

Published

2025-06-09

Issue

Section

Original Articles

How to Cite

Oyhanart, S., Barcenas, C. A., Collet, A. M., Kaplan, A. E., & Mandalunis, P. M. (2025). Effect of ibuprofen on amelogenesis in Wistar rats. Journal of Applied Oral Science, 33, e20240300. https://doi.org/10.1590/