Synergistic effect of Maquiberry cystatin, sodium fluoride and stannous chloride for the prevention of initial dental erosion in vitro

Authors

DOI:

https://doi.org/10.1590/

Keywords:

Demineralization, Enamel, Saliva

Abstract

Objective  This study analyzed the synergistic effect between a recombinant Maquiberry (MaquiCPI-3) protein, sodium fluoride (NaF), and stannous chloride (SnCl2) against initial dental erosion in vitro. Methodology  A total of 98 bovine enamel samples were prepared and allocated to seven treatment groups (n=14/group) as follows: deionized water (Water); commercial solution, 800 ppm Sn+2, 500 ppm F-, ElmexTM, Erosion, GABA, Therwil, BL, CH (Elmex); 500 ppm of fluoride (F-) from NaF (NaF); 500 ppm of F- from NaF and 800 ppm of tin (Sn+2) from SnCl2 (NaF+SnCl); 0.5 mg/mL MaquiCPI-3 (MaquiCPI-3); combination of MaquiCPI-3 and NaF (Maqui+NaF) and; combination of MaquiCPI-3, NaF and SnCl (Maqui+NaF+SnCl). Samples were treated with the respective solutions (250 μl, 2 min, 37°C, 250 rpm). After forming the acquired enamel pellicle (AEP) by adding human saliva from nine volunteers (250 μl, 1 h, 37°C, 250 rpm), the samples underwent acid challenge (1 mL, 1% citric acid, pH 3.6, 1 min, 25°C, 250 rpm). All procedures were performed in triplicate. Surface microhardness change percentage (%SMC) and relative surface reflection intensity (%SRI) were measured and analyzed by One-way ANOVA/Tukey’s tests (p<0.05). Results  The Elmex, NaF, NaF+SnCl, MaquiCPI-3, Maqui+NaF, and Maqui+NaF+SnCl groups showed significantly lower %SMC compared with Water. The NaF, Sn+2, NaF+SnCl, MaquiCPI-3, Maqui+NaF and Maqui+NaF+SnCl groups exhibited significantly greater protection compared with Elmex. Maqui+NaF+SnCl revealed better enamel protection (significant) when compared with the MaquiCPI-3 and Maqui+NaF groups. Elmex, NaF+SnCl, MaquiCPI-3, Maqui+NaF, and Maqui+NaF+SnCl had a significantly higher %SRI compared to the Water and NaF groups, which did not differ between each other. Conclusion  All treatment solutions provided protection against initial dental erosion in vitro. Formulations containing Maqui+NaF+SnCl2 offered superior enamel protection compared with MaquiCPI-3 alone.

Downloads

Download data is not yet available.

References

- Schlueter N, Amaechi BT, Bartlett D, Buzalaf MA, Carvalho TS, Ganss C, et al. Terminology of erosive tooth wear: consensus report of a workshop organized by the ORCA and the Cariology Research Group of the IADR. Caries Res. 2020;54(1):2-6. doi: 10.1159/000503308

» https://doi.org/10.1159/000503308

- Shellis RP, Addy M. The interactions between attrition, abrasion and erosion in tooth wear. Monogr Oral Sci. 2014;25:32-45. doi: 10.1159/000359936

» https://doi.org/10.1159/000359936

- Wang X, Lussi A. Assessment and management of dental erosion. Dent Clin North Am. 2020;54(3):565-78. doi: 10.1016/j.cden.2010.03.003

» https://doi.org/10.1016/j.cden.2010.03.003

- Buzalaf MA, Hannas AR, Kato MT. Saliva and dental erosion. J Appl Oral Sci. 2012;20(5):493-502. doi: 10.1590/s1678-77572012000500001

» https://doi.org/10.1590/s1678-77572012000500001

- Salas MM, Nascimento GG, Huysmans MC, Demarco FF. Estimated prevalence of erosive tooth wear in permanent teeth of children and adolescents: An epidemiological systematic review and meta-regression analysis. J Dent. 2015;43(1):42-50. doi: 10.1016/j.jdent.2014.10.012

» https://doi.org/10.1016/j.jdent.2014.10.012

- Rusyan E, Struzycka I, Lussi A, Grabowska E, Mielczarek A. Prevalence of dental erosive wear and possible risk factors among adolescents and adults in Poland - A National Survey. Oral Health Prev Dent. 2024;6(22):389-98. doi: 10.3290/j.ohpd.b5656322

» https://doi.org/10.3290/j.ohpd.b5656322

- Yip K, Lam PP, Yiu CK. Prevalence and associated factors of erosive tooth wear among preschool children-a systematic review and meta-analysis. Healthcare (Basel). 2022;10(3):491. doi: 10.3390/healthcare10030491

» https://doi.org/10.3390/healthcare10030491

- Jaeggi T, Lussi A. Prevalence, incidence and distribution of erosion. Monogr Oral Sci. 2014;25:55-73. doi: 10.1159/000360973

» https://doi.org/10.1159/000360973

- Lussi A, Carvalho TS. Erosive tooth wear: a multifactorial condition of growing concern and increasing knowledge. Monogr Oral Sci. 2014;25:1-15. doi: 10.1159/000360380

» https://doi.org/10.1159/000360380

- Donovan T, Nguyen-Ngoc C, AbdAlraheam I, Irusa K. Contemporary diagnosis and management of dental erosion. J Esthet Restor Dent. 2021;33(1):78-87. doi: 10.1111/jerd.12706

» https://doi.org/10.1111/jerd.12706

- Huysmans MC, Young A, Ganss C. The role of fluoride in erosion therapy. Monogr Oral Sci. 2014;25:230-43. doi: 10.1159/000360555

» https://doi.org/10.1159/000360555

- Pelá VT, Niemeyer SH, Baumann T, Levy FM, Henrique-Silva F, Lussi A, et al. Acquired pellicle engineering using a combination of organic (Sugarcane Cystatin) and inorganic (Sodium Fluoride) components against dental erosion. Caries Res. 2022;56(2):138-45. doi: 10.1159/000522490

» https://doi.org/10.1159/000522490

- Pelá VT, Ventura TM, Taira EA, Thomassian LT, Brito L, Matuhara YE, et al. Use of reflectometer optipen to assess the preventive effect of a sugarcane cystatin on initial dental erosion in vivo. J Mech Behav Biomed Mater. 2023;141:105782. doi: 10.1016/j.jmbbm.2023.105782

» https://doi.org/10.1016/j.jmbbm.2023.105782

- Souza-E-Silva CM, Silva Ventura TM, Pau L, la Silva Cassiano, Lima Leite A, Buzalaf MA. Effect of gels containing chlorhexidine or epigallocatechin-3-gallate on the protein composition of the acquired enamel pellicle. Arch Oral Biol. 2017;82:92-8. doi: 10.1016/j.archoralbio.2017.05.024

» https://doi.org/10.1016/j.archoralbio.2017.05.024

- Pelá VT, Lunardelli JG, Tokuhara CK, Gironda CC, Silva ND, Carvalho TS, et al. Safety and In situ antierosive effect of caneCPI-5 on dental enamel. J Dent Res. 2021;100(12):1344-50. doi: 10.1177/00220345211011590

» https://doi.org/10.1177/00220345211011590

- Carvalho TS, Pham K, Rios D, Niemeyer S, Baumann T. Synergistic effect between plant extracts and fluoride to protect against enamel erosion: an in vitro study. PLoS One. 2022;17(11):e0277552. doi: 10.1371/journal.pone.0277552

» https://doi.org/10.1371/journal.pone.0277552

- Inchingolo F, Dipalma G, Azzollini D, Trilli I, Carpentiere V, Hazballa D, et al. Advances in preventive and therapeutic approaches for dental erosion: a systematic review. Dent J (Basel). 2023;11(12):274. doi: 10.3390/dj11120274

» https://doi.org/10.3390/dj11120274

- Johannes N, Hertel S, Stoffel V, Hannig C, Basche S, Schmitt V, et al. Impact of pH-adjusted fluoride and stannous solutions on the protective properties on the pellicle layer in vitro and in situ. Sci Rep. 2024;14(1):3378. doi: 10.1038/s41598-024-53732-7

» https://doi.org/10.1038/s41598-024-53732-7

- Cheaib Z, Lussi A. Impact of acquired enamel pellicle modification on initial dental erosion. Caries Res. 2011;45(2):107-12. doi: 10.1159/000324803

» https://doi.org/10.1159/000324803

- Santiago AC, Khan ZN, Miguel MC, Gironda CC, Soares-Costa A, Pelá VT, et al. A new sugarcane cystatin strongly binds to dental enamel and reduces erosion. J Dent Res. 2017;96:1051-7. doi: 10.1177/0022034517712981

» https://doi.org/10.1177/0022034517712981

- Carvalho TS, Araújo TT, Ventura TM, Dionizio A, Câmara JV, Moraes SM, et al. Acquired pellicle protein-based enginering protects against erosive demineralization. J Dent. 2020;102:e103478. doi: 10.1016/j.jdent.2020.103478

» https://doi.org/10.1016/j.jdent.2020.103478

- Pelá VT, Buzalaf MA, Niemeyer SH, Baumann T, Henrique-Silva F, Toyama D, et al. Acquired pellicle engineering with proteins/peptides: mechanism of action on native human enamel surface. J Dent. 2021;107:e103612. doi: 10.1016/j.jdent.2021.103612

» https://doi.org/10.1016/j.jdent.2021.103612

- Pelá VT, Brito L, Taira EA, Henrique-Silva F, Pieretti JC, Seabra AB, et al. Preventive effect of chitosan gel containing CaneCPI-5 against enamel erosive wear in situ. Clin Oral Investig. 2022;26(11): 6511-9. doi: 10.1007/s00784-022-04600-z

» https://doi.org/10.1007/s00784-022-04600-z

- Souza EP, Ferro M, Pelá VT, Fernanda-Carlos T, Borges CG, Taira EA, et al. Maquiberry cystatins: recombinant expression, characterization, and use to protect tooth dentin and enamel. Biomedicines. 2023;11(5):1360. doi: 10.3390/biomedicines11051360

» https://doi.org/10.3390/biomedicines11051360

- Lennon AM, Pfeffer M, Buchalla W, Becker K, Lennon S, Attin T. Effect of a casein/calcium phosphate-containing tooth cream and fluoride on enamel erosion in vitro. Caries Res. 2006;40(2):154-7. doi: 10.1159/000091063

» https://doi.org/10.1159/000091063

- Martins DD, Boteon AP, Ferreira AM, Debortolli AL, Grizzo IC, Ionta FQ, et al. Can the combination of proanthocyanidin and vitamin E or palm oil effectively protect enamel against in vitro erosive and abrasive challenges? J Appl Oral Sci. 2024;32:e20240100. doi: 10.1590/1678-7757-2024-0100

» https://doi.org/10.1590/1678-7757-2024-0100

- Nahórny S, Oliveira IR, Soares LE. Biomineralization induced by chitosan and collagen-based materials with fluoride for dentin coverage: chemical and morphological analysis. Microsc Res Tech. 2022;85(3):1089-100. doi: 10.1002/jemt.23978

» https://doi.org/10.1002/jemt.23978

- Niemeyer SH, Baumann T, Lussi A, Scaramucci T, Carvalho TS. Plant extracts have dual mechanism on the protection against dentine erosion: action on the dentine substrate and modification of the salivary pellicle. Sci Rep. 2023;13(1):7089. doi: 10.1038/s41598-023-34256-y

» https://doi.org/10.1038/s41598-023-34256-y

- Reis FN, Pelá VT, Câmara JV, Ventura TM, Rodrigues CM, Lima KP, et al. A new role for resveratrol: protection of enamel against erosion. J Dent. 2024;141:104810. doi: 10.1016/j.jdent.2023.104810

» https://doi.org/10.1016/j.jdent.2023.104810

- Oliveira AA, Xavier AL, Silva TT, Debortolli AL, Ferdin AC, Boteon AP, et al. Acquired pellicle engineering with the association of cystatin and vitamin E against enamel erosion. J Dent. 2023;138:104680. doi: 10.1016/j.jdent.2023.104680

» https://doi.org/10.1016/j.jdent.2023.104680

- Carvalho TS, Baumann T, Lussi A. A new hand-held optical reflectometer to measure enamel erosion: correlation with surface hardness and calcium release. Sci Rep. 2016;6:25259. doi: 10.1038/srep25259

» https://doi.org/10.1038/srep25259

- Pelá VT, Lunardelli JG, Ventura TM, Camiloti GD, Baumann T, Carvalho TS, et al. Proteomic profiles of the acquired enamel pellicle formed in vitro, in situ, or in vivo. Eur J Oral Sci. 2020;128(6):487-94. doi: 10.1111/eos.12744

» https://doi.org/10.1111/eos.12744

- Pelá VT, Cassiano LP, Ventura TM, Souza-E-Silva CM, Gironda CC, Rios D, et al. Proteomic analysis of the acquired enamel pellicle formed on human and bovine tooth: a study using the Bauru in situ pellicle model (BISPM). J Appl Oral Sci. 2018;27:e20180113. doi: 10.1590/1678-7757-2018-0113

» https://doi.org/10.1590/1678-7757-2018-0113

- Laurance-Young P, Bozec L, Gracia L, Rees G, Lippert F, Lynch RJ, et al. A review of the structure of human and bovine dental hard tissues and their physicochemical behaviour in relation to erosive challenge and remineralisation. J Dent. 2011;39(4):266-72. doi: 10.1016/j.jdent.2011.01.008

» https://doi.org/10.1016/j.jdent.2011.01.008

- Ventura TM, Buzalaf MA, Baumann T, Pelá VT, Niemeyer SH, Crusca E, et al. New insights into the protective effect of statherin-derived peptide for different acquired enamel pellicle formation times on the native human enamel surfaces. Arch Oral Biol. 2023;148:105643. doi: 10.1016/j.archoralbio.2023.105643

» https://doi.org/10.1016/j.archoralbio.2023.105643

- Carvalho TS, Baumann T, Lussi A. Does erosion progress differently on teeth already presenting clinical signs of erosive tooth wear than on sound teeth? An in vitro pilot trial. BMC Oral Health. 2016;17(1):1-14. doi: 10.1186/s12903-016-0231-y

» https://doi.org/10.1186/s12903-016-0231-y

- Marinho VC, Chong LY, Worthington HV, Walsh T. Fluoride mouthrinses for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2016;7(7):CD002284. doi: 10.1002/14651858.CD002284.pub2

» https://doi.org/10.1002/14651858.CD002284.pub2

- Lussi A, Buzalaf MA, Duangthip D, Anttonen V, Ganss C, João-Souza SH, et al. The use of fluoride for the prevention of dental erosion and erosive tooth wear in children and adolescents. Eur Arch Paediatr Dent. 2019;20(6):517-27. doi: 10.1007/s40368-019-00420-0

» https://doi.org/10.1007/s40368-019-00420-0

- Algarni AA, Mussi MC, Moffa EB, Lippert F, Zero DT, Siqueira WL, et al. The impact of stannous, fluoride ions and its combination on enamel pellicle proteome and dental erosion prevention. PLoS One. 2015;10(6):e0128196. doi: 10.1371/journal.pone.0128196

» https://doi.org/10.1371/journal.pone.0128196

- Schlueter N, Klimek J, Ganss C. Effect of stannous and fluoride concentration in a mouth rinse on erosive tissue loss in enamel in vitro. Arch Oral Biol. 2009;54(5):432-6. doi: 10.1016/j.archoralbio.2009.01.019

» https://doi.org/10.1016/j.archoralbio.2009.01.019

- Scaramucci T, Borges AB, Lippert F, Zero DT, Aoki IV, Hara AT. Anti-erosive properties of solutions containing fluoride and different film-forming agents. J Dent. 2015;43(4):458-65. doi: 10.1016/j.jdent.2015.01.007

» https://doi.org/10.1016/j.jdent.2015.01.007

Downloads

Published

2025-06-09

Issue

Section

Original Articles

How to Cite

Pelá, V. T., Silva, T. L., Taira, E. A., Sant’Ana, G. A., Sakae, L. O., Levy, F. M., Forlin, T. S., Souza, E. P. de, Ventura, T. M. O., Carvalho, T. S., Lussi, A., & Buzalaf, M. A. R. (2025). Synergistic effect of Maquiberry cystatin, sodium fluoride and stannous chloride for the prevention of initial dental erosion in vitro. Journal of Applied Oral Science, 33, e20240479. https://doi.org/10.1590/