M1 and M2 macrophages markers are alternately expressed during periapical lesion development

Authors

DOI:

https://doi.org/10.1590/1678-7757-2024-0579

Keywords:

Macrophage polarization, Periapical lesion, Microscopic evaluation, Gene expression, Cytokines

Abstract

Background  This study evaluated the altered expression levels of genes and cytokines associated with M1 and M2 macrophages during the development of periapical lesion (PL). Methodology  PL was induced in the lower first molars of 96 mice. After the experimental periods of two, seven, 14, 21, and 42 days, the animals were euthanized and their jaws were dissected and submitted to the following analyses: microscopic descriptive analysis and fluorescence microscopy morphometry of PL size (mm2); quantitative gene expression analysis by qRT-PCR for M1 (Cxcl10, Cxcl9, and Nos2) and M2 phenotypes (Arg1, Fizz1, Ym1, and Mrc1); and M1- (GM-CSF, IFN-γ, IL-6, IL-1β, TNF-α) and M2- (IL-4, IL-13, and IL- 10) related cytokines quantification by Luminex. Data were statistically compared by ANOVA, Tukey post-test, Kruskal-Wallis, and Dunn post-test (α=5%). Results  PL area and inflammatory infiltrate increased over experimental periods. From a contextual view, a pro-inflammatory profile and a higher activation of M1 phenotype markers in the initial periods of two and seven days could be observed. On day 21, microscopic features and M2 subtype predominance indicated a repair attempt. However, on day 42, an acute exacerbation of immunoinflammatory process and return to the M1 macrophage profile were evidenced. Conclusion  M1 and M2 macrophage polarization-related markers were expressed alternately throughout the experimental periods, according to the stage of PL progression.

Downloads

Download data is not yet available.

References

- Graves DT, Oates T, Garlet GP. Review of osteoimmunology and the host response in endodontic and periodontal lesions. J Oral Microbiol. 2011;17:3. doi: 10.3402/jom.v3i0.5304

» https://doi.org/10.3402/jom.v3i0.5304

- Braz-Silva PH, Bergamini ML, Mardegan AP, De Rosa CS, Hasseus B, Jonasson P. Inflammatory profile of chronic apical periodontitis: a literature review. Acta Odontol Scand. 2019;77(3):173-80. doi: 10.1080/00016357.2018.1521005

» https://doi.org/10.1080/00016357.2018.1521005

- Petean IB, Silva-Sousa AC, Cronenbold TJ, Mazzi-Chaves JF, Silva LA, Segato RA, et al. Genetic, cellular and molecular aspects involved in apical periodontitis. Braz Dent J. 2022;33(4):1-11. doi: 10.1590/0103-6440202205113

» https://doi.org/10.1590/0103-6440202205113

- Džopalic T, Tomic S, Bekic M, Vucevic D, Mihajlovic D, Erakovic M, et al. Ex vivo study of IL-6 expression and function in immune cell subsets from human periapical lesions. Int Endod J. 2022;55(5):480-94. doi: 10.1111/iej.13704

» https://doi.org/10.1111/iej.13704

- Song Y, Li X, Huang D, Song H. Macrophages in periapical lesions: potential roles and future directions. Front Immunol. 2022; 5:13:949102. doi: 10.3389/fimmu.2022.949102

» https://doi.org/10.3389/fimmu.2022.949102

- Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958-69. doi: 10.1038/nri2448

» https://doi.org/10.1038/nri2448

- Bertasso AS, Léon JE, Silva RA, Silva LA, Queiroz AM, Pucinelli CM, et al. Immunophenotypic quantification of M1 and M2 macrophage polarization in radicular cysts of primary and permanent teeth. Int Endod J. 2020;53(5):627-35. doi: 10.1111/iej.13257

» https://doi.org/10.1111/iej.13257

- Lv R, Bao Q, Li Y. Regulation of M1-type and M2-type macrophage polarization in RAW264.7 cells by Galectin-9. Mol Med Rep. 2017;16(6):9111-9. doi: 10.3892/mmr.2017.7719

» https://doi.org/10.3892/mmr.2017.7719

- Atri C, Guerfali FZ, Laouini D. Role of Human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 2018;19(6):1801. doi: 10.3390/ijms19061801

» https://doi.org/10.3390/ijms19061801

- Weber M, Schlittenbauer T, Moebius P, Büttner-Herold M, Ries J, Preidl R, et al. Macrophage polarization differs between apical granulomas, radicular cysts, and dentigerous cysts. Clin Oral Investig. 2018 Jan;22(1):385-94. doi: 10.1007/s00784-017-2123-1

» https://doi.org/10.1007/s00784-017-2123-1

- França GM, Carmo AF, Costa H Neto, Andrade AL, Lima KC, Galvão HC. Macrophages subpopulations in chronic periapical lesions according to clinical and morphological aspects. Braz Oral Res. 2019;33:e047. doi: 10.1590/1807-3107bor-2019.vol33.0047

» https://doi.org/10.1590/1807-3107bor-2019.vol33.0047

- Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 2015:6:263. doi: 10.3389/fimmu.2015.00263

» https://doi.org/10.3389/fimmu.2015.00263

- Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-40. doi: 10.1002/jcp.26429

» https://doi.org/10.1002/jcp.26429

- Mège JL, Mehraj V, Capo C. Macrophage polarization and bacterial infections. Curr Opin Infect Dis. 2011;24(3):230-4. doi: 10.1097/QCO.0b013e328344b73e

» https://doi.org/10.1097/QCO.0b013e328344b73e

- Weiss G, Schaible EU. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev. 2015;264(1):182-203. doi: 10.1111/imr.12266

» https://doi.org/10.1111/imr.12266

- Mily A, Kalsum S, Loreti MG, Rekha RS, Muvva JR, Lourda M, et al. Polarization of M1 and M2 human monocyte-derived cells and analysis with flow cytometry upon Mycobacterium tuberculosis infection. J Vis Exp. 2020:(163). doi: 10.3791/61807

» https://doi.org/10.3791/61807

- Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021;22(13):6995. doi: 10.3390/ijms22136995

» https://doi.org/10.3390/ijms22136995

- Mills CD, Ley K. M1 and M2 macrophages: the chicken and the egg of immunity. J Innate Immun. 2014;6(6):716-26. doi: 10.1159/000364945

» https://doi.org/10.1159/000364945

- Ley K. M1 Means Kill; M2 Means Heal. J Immunol. 2017;199(7):2191-3. doi: 10.4049/jimmunol.1701135

» https://doi.org/10.4049/jimmunol.1701135

- Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123-47. doi: 10.1146/annurev-pathmechdis-012418-012718

» https://doi.org/10.1146/annurev-pathmechdis-012418-012718

- Liu T, Chen D, Tang S, Zou Z, Yang F, Zhang Y, et al. P53 alleviates the progression of periodontitis by reducing M1-type macrophage differentiation. Inflammation. 2024;47(4):1170-84. doi: 10.1007/s10753-024-01968-w

» https://doi.org/10.1007/s10753-024-01968-w

- Veloso P, Fernández A, Terraza-Aguirre C, Álvarez C, Vernal R, Escobar A, et al. Macrophages skew towards M1 profile through reduced CD163 expression in symptomatic apical periodontitis. Clin Oral Investig. 2020;24(12):4571-81. doi: 10.1007/s00784-020-03324-2

» https://doi.org/10.1007/s00784-020-03324-2

- Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. doi: 10.1371/journal.pbio.3000410

» https://doi.org/10.1371/journal.pbio.3000410

- Silva RA, Ferreira PD, De Rossi A, Nelson-Filho P, Silva LA. Toll-like receptor 2 knockout mice showed increased periapical lesion size and osteoclast number. J Endod. 2012;38(6):803-13. doi: 10.1016/j.joen.2012.03.017

» https://doi.org/10.1016/j.joen.2012.03.017

- Silva RA, Nelson-Filho P, Lucisano MP, De Rossi A, Queiroz AM,Silva LA. MyD88 knockout mice develop initial enlarged periapical lesions with increased numbers of neutrophils. Int Endod J. 2014;47(7):675-86. doi: 10.1111/iej.12204

» https://doi.org/10.1111/iej.12204

- Barreiros D, Pucinelli CM, Oliveira KM, Paula-Silva FW, Nelson P Filho, Silva LA, et al. Immunohistochemical and mRNA expression of RANK, RANKL, OPG, TLR2 and MyD88 during apical periodontitis progression in mice. J Appl Oral Sci. 2018;26:e20170512. doi: 10.1590/1678-7757-2017-0512

» https://doi.org/10.1590/1678-7757-2017-0512

- De Rossi A, Lucisano MP, De Rossi M, Nelson-Filho P, Silva RA, Silva LA, et al. Effect of intercellular adhesion molecule 1 deficiency on the development of apical periodontitis. Int Endod J. 2020;53(3):354-65. doi: 10.1111/iej.13228

» https://doi.org/10.1111/iej.13228

- Saradna A, Do DC, Kumar S, Fu QL, Gao P. Macrophage polarization and allergic asthma. Transl Res. 2018;191:1-14. doi: 10.1016/j.trsl.2017.09.002

» https://doi.org/10.1016/j.trsl.2017.09.002

- Chen T, Cao Q, Wang Y, Harris DCH. M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney Int. 2019;95(4):760-73. doi: 10.1016/j.kint.2018.10.041

» https://doi.org/10.1016/j.kint.2018.10.041

- Cassetta L, Cassol E, Poli G. Macrophage polarization in health and disease. ScientificWorldJournal. 2011:11:2391-402. doi: 10.1100/2011/213962

» https://doi.org/10.1100/2011/213962

- Corbera-Bellalta M, Planas-Rigol E, Lozano E, Terrades-García N, Alba MA, Prieto-González S, et al. Blocking interferon ? reduces expression of chemokines CXCL9, CXCL10 and CXCL11 and decreases macrophage infiltration in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis. 2016;75(6):1177-86. doi: 10.1136/annrheumdis-2015-208371

» https://doi.org/10.1136/annrheumdis-2015-208371

- Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation: a target for novel cancer therapy. Cancer Treat Rev. 2018;63:40-7. doi: 10.1016/j.ctrv.2017.11.007

» https://doi.org/10.1016/j.ctrv.2017.11.007

- Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453-61. doi: 10.2741/2692

» https://doi.org/10.2741/2692

- Pfeilschifter J, Chenu C, Bird A, Mundy GR, Roodman GD. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. J Bone Miner Res. 1989;4(1):113-8. doi: 10.1002/jbmr.5650040116

» https://doi.org/10.1002/jbmr.5650040116

- Metzger CE, Narayanan AS. The Role of Osteocytes in Inflammatory Bone Loss. Front Endocrinol (Lausanne). 2019;10:285. doi: 10.3389/fendo.2019.00285

» https://doi.org/10.3389/fendo.2019.00285

- Márton IJ, Kiss C. Protective and destructive immune reactions in apical periodontitis. Oral Microbiol Immunol. 2000;15(3):139-50. doi: 10.1034/j.1399-302x.2000.150301.x

» https://doi.org/10.1034/j.1399-302x.2000.150301.x

- Azuma MM, Samuel RO, Gomes-Filho JE, Dezan-Junior E, Cintra LT. The role of IL-6 on apical periodontitis: a systematic review. Int Endod J. 2014;47(7):615-21. doi: 10.1111/iej.12196

» https://doi.org/10.1111/iej.12196

- Gazivoda D, Dzopalic T, Bozic B, Tatomirovic Z, Brkic Z, Colic M. Production of proinflammatory and immunoregulatory cytokines by inflammatory cells from periapical lesions in culture. J Oral Pathol Med. 2009;38(7):605-11. doi: 10.1111/j.1600-0714.2009.00788.x

» https://doi.org/10.1111/j.1600-0714.2009.00788.x

- Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol. 2014;5:532. doi: 10.3389/fimmu.2014.00532

» https://doi.org/10.3389/fimmu.2014.00532

- MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323-50. doi: 10.1146/annurev.immunol.15.1.323

» https://doi.org/10.1146/annurev.immunol.15.1.323

- Sha W, Zhao B, Wei H, Yang Y, Yin H, Gao J, et al. Astragalus polysaccharide ameliorates vascular endothelial dysfunction by stimulating macrophage M2 polarization via potentiating Nrf2/HO-1 signaling pathway. Phytomedicine. 2023;112:154667. doi: 10.1016/j.phymed.2023.154667

» https://doi.org/10.1016/j.phymed.2023.154667

- Garlet GP. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J Dent Res. 2010;89(12):1349-63. doi: 10.1177/0022034510376402

» https://doi.org/10.1177/0022034510376402

- Araujo-Pires AC, Vieira AE, Francisconi CF, Biguetti CC, Glowacki A, Yoshizawa S, et al. IL-4/CCL22/CCR4 axis controls regulatory T-cell migration that suppresses inflammatory bone loss in murine experimental periodontitis. J Bone Miner Res. 2015;30(3):412-22. doi: 10.1002/jbmr.2376

» https://doi.org/10.1002/jbmr.2376

- Garlet GP, Giannobile WV. Macrophages: the bridge between inflammation resolution and tissue repair? J Dent Res. 2018;97(10):1079-81. doi: 10.1177/0022034518785857

» https://doi.org/10.1177/0022034518785857

- Iwaszko M, Bialy S, Bogunia-Kubik K. Significance of Interleukin (IL)-4 and IL-13 in inflammatory arthritis. Cells. 2021;10(11):3000. doi: 10.3390/cells10113000

» https://doi.org/10.3390/cells10113000

- Guan X, Wang Y, Li W, Mu W, Tang Y, Wang M, et al. The role of macrophage efferocytosis in the pathogenesis of apical periodontitis. Int J Mol Sci. 2024;25(7):3854. doi: 10.3390/ijms25073854

» https://doi.org/10.3390/ijms25073854

- Freire MS, Oliveira NG, Lima SM, Porto WF, Martins DC, Silva ON, et al. IL-4 absence triggers distinct pathways in apical periodontitis development. J Proteomics. 2021;233:104080. doi: 10.1016/j.jprot.2020.104080

» https://doi.org/10.1016/j.jprot.2020.104080

- De Rossi A, Rocha LB, Rossi MA. Interferon-gamma, interleukin-10, Intercellular adhesion molecule-1, and chemokine receptor 5, but not interleukin-4, attenuate the development of periapical lesions. J Endod. 2008;34(1):31-8. doi: 10.1016/j.joen.2007.09.021

» https://doi.org/10.1016/j.joen.2007.09.021

- Queiroz-Junior CM, Silva MJ, Corrêa JD, Madeira MF, Garlet TP, Garlet GP, et al. A controversial role for IL-12 in immune response and bone resorption at apical periodontal sites. Clin Dev Immunol. 2010;2010:327417. doi: 10.1155/2010/327417

» https://doi.org/10.1155/2010/327417

- Radics T, Kiss C, Tar I, Márton IJ. Interleukin-6 and granulocyte-macrophage colony-stimulating factor in apical periodontitis: correlation with clinical and histologic findings of the involved teeth. Oral Microbiol Immunol. 2003;18(1):9-13. doi: 10.1034/j.1399-302x.2003.180102.x

» https://doi.org/10.1034/j.1399-302x.2003.180102.x

- Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677-86. doi: 10.1016/j.it.2004.09.015

» https://doi.org/10.1016/j.it.2004.09.015

Downloads

Published

2025-06-27

Issue

Section

Original Articles

How to Cite

Pucinelli, C. M., Nelson-Filho, P., Lucisano, M. P., León, J. E., Faccioli, L. H., Sorgi, C. A., Silva, C. M. P. C., Silva, L. A. B. da, & Silva, R. A. B. da. (2025). M1 and M2 macrophages markers are alternately expressed during periapical lesion development. Journal of Applied Oral Science, 33, e2024-0579. https://doi.org/10.1590/1678-7757-2024-0579