Factors influencing the response to periodontal therapy in patients with diabetes: post hoc analysis of a randomized clinical trial using machine learning

Authors

DOI:

https://doi.org/10.1590/1678-7757-2025-0211

Keywords:

Artificial intelligence, Clinical trial, Diabetes mellitus, Non-surgical periodontal debridement, Periodontitis

Abstract

Objective  To evaluate factors influencing the response to periodontal therapy in patients with periodontitis and type 2 diabetes mellitus (DM) using machine learning (ML) techniques, considering periodontal parameters, metabolic status, and demographic characteristics. Methodology  We applied machine learning techniques to perform a post hoc analysis of data collected at baseline and a 6-month follow-up from a randomized clinical trial (RCT). A leave-one-out cross-validation strategy was used for model training and evaluation. We tested seven different algorithms: K-Nearest Neighbors, Decision Tree, Support Vector Machine, Random Forest, Extreme Gradient Boosting, and Logistic Regression. Model performance was assessed using accuracy, specificity, recall, and the area under the Receiver Operating Characteristic (ROC) curve (AUC). Results  a total of 75 patients were included. Using the first exploratory data analysis, we observed three clusters of patients who achieved the clinical endpoint related to HbA1c values. HbA1c ≤ 9.4% was correlated with lower PD (r=0.2), CAL (r=0.1), and the number of sites with PD ≥5 mm (r=0.1) at baseline. This study induced AI classification models with different biases. The model with the best fit was Random Forest with a 0.83 AUC. The Random Forest AI model has an accuracy of 80%, a sensitivity of 64%, and a specificity of 87%. Our findings demonstrate that PD and CAL were the most important variables contributing to the predictive performance of the Random Forest model. Conclusion  The combination of nine baseline periodontal, metabolic, and demographic factors from patients with periodontitis and type 2 DM may indicate the response to periodontal therapy. Lower levels of full mouth PD, CAL, plaque index, and HbA1c at baseline increased the chances of achieving the endpoint for treatment at 6-month follow-up. However, all nine features included in the model should be considered for treatment outcome predictability. Clinicians may consider the characterization of periodontal therapy response to implement personalized care and treatment decision-making. Clinical trial registration ID: NCT02800252

Downloads

Download data is not yet available.

References

- Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;45 Suppl 20:S162-S170. doi: 10.1111/jcpe.12946

» https://doi.org/10.1111/jcpe.12946

- Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J Dent Res. 2014;93(11):1045-53. doi: 10.1177/0022034514552491

» https://doi.org/10.1177/0022034514552491

- Chung WK, Erion K, Florez JC, Hattersley AT, Hivert MF, Lee CG, et al. Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2020;63(9):1671-93. doi: 10.1007/s00125-020-05181-w

» https://doi.org/10.1007/s00125-020-05181-w

- Genco RJ, Borgnakke WS. Risk factors for periodontal disease. Periodontol 2000. 2013;62(1):59-94. doi: 10.1111/j.1600-0757.2012.00457

» https://doi.org/10.1111/j.1600-0757.2012.00457

- Schwendicke F, Krois J. Precision dentistry-what it is, where it fails (yet), and how to get there. Clin Oral Investig. 2022;26(4):3395-403. doi: 10.1007/s00784-022-04420-1

» https://doi.org/10.1007/s00784-022-04420-1

- Plana D, Shung DL, Grimshaw AA, Saraf A, Sung JJY, Kann BH. Randomized clinical trials of machine learning interventions in health care: a systematic review. JAMA Netw Open. 2022;5(9):e2233946. doi: 10.1001/jamanetworkopen.2022.33946

» https://doi.org/10.1001/jamanetworkopen.2022.33946

- Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry. J Dent Res. 2021;100(3):232-44. doi: 10.1177/0022034520969115

» https://doi.org/10.1177/0022034520969115

- Zatt FP, Cordeiro JV, Bohner L, Souza BD, Caldas VE, Caldas RA. Using machine learning to classify temporomandibular disorders: a proof of concept. J Appl Oral Sci. 2024;32:e20240282. doi: 10.1590/1678-7757-2024-0282

» https://doi.org/10.1590/1678-7757-2024-0282

- Lee J-H, Kim D, Jeong S-N, Choi S-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114. doi: 10.5051/jpis.2018.48.2.114

» https://doi.org/10.5051/jpis.2018.48.2.114

- Kebschull M, Guarnieri P, Demmer RT, Boulesteix AL, Pavlidis P, Papapanou PN. Molecular differences between chronic and aggressive periodontitis. J Dent Res. 2013;92(12):1081-8. doi: 10.1177/0022034513506011

» https://doi.org/10.1177/0022034513506011

- Castro dos Santos NC, Andere NM, Araujo CF, Marco AC, Kantarci A, Van Dyke TE, et al. Omega-3 PUFA and aspirin as adjuncts to periodontal debridement in patients with periodontitis and type 2 diabetes mellitus: randomized clinical trial. J Periodontol. 2020;91(10):1318-27. doi: 10.1002/JPER.19-0613

» https://doi.org/10.1002/JPER.19-0613

- Feres M, Retamal-valdes B, Faveri M, Duarte P, Shibli J, Soares G, et al. Proposal of a clinical endpoint for periodontal trials: the treat-to-target approach.

- Burman P. A comparative study of ordinary cross-validation, v -fold cross-validation and the repeated learning-testing methods. Biometrika. 1989;76(3):503-14.

- Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Technique. J Artificial Int Res. 2002;16:321-57.

- Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv

- Rattu V, Raindi D, Antonoglou G, Nibali L. Prevalence of stable and successfully treated periodontitis subjects and incidence of subsequent tooth loss within supportive periodontal care: a systematic review with meta-analyses. J Clin Periodontol. 2023;50(10):1371-89. doi: 10.1111/jcpe.13835

» https://doi.org/10.1111/jcpe.13835

- Chapple ILC, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;45:S68-S77. doi: 10.1111/jcpe.12940

» https://doi.org/10.1111/jcpe.12940

- Sanz M, Herrera D, Kebschull M, Chapple I, Jepsen S, Berglundh T, et al Treatment of stage I-III periodontitis-The EFP S3 level clinical practice guideline. J Clin Periodontol. 2020; 47(S22):4-60. doi: 10.1111/jcpe.13290

» https://doi.org/10.1111/jcpe.13290

- Teles R, Moss K, Preisser JS, Genco R, Giannobile WV, Corby P, et al. Patterns of periodontal disease progression based on linear mixed models of clinical attachment loss. J Clin Periodontol. 2018;45(1):15-25. doi: 10.1111/jcpe.12827

» https://doi.org/10.1111/jcpe.12827

- Löe H, Theilade E, Jensen SB. Experimental gingivitis in man. J Periodontol. 1965;36(3):177-87. doi: 10.1902/jop.1965.36.3.177

» https://doi.org/10.1902/jop.1965.36.3.177

- Axelsson P, Nystrom B, Lindhe J. The long-term effect of a plaque control program on tooth mortality, caries and periodontal disease in adults. Results after 30 years of maintenance. J Clin Periodontol. 2004;31(9):749-57. doi: 10.1111/j.1600-051X.2004.00563.x

» https://doi.org/10.1111/j.1600-051X.2004.00563.x

- Page RC, Kornman KS. The pathogenesis of human periodontitis: an introduction. Periodontol 2000. 1997;14(1):9-11. doi: 10.1111/j.1600-0757.1997.tb00189.x

» https://doi.org/10.1111/j.1600-0757.1997.tb00189.x

- Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol. 2021;21(7):426-40. doi: 10.1038/s41577-020-00488-6

» https://doi.org/10.1038/s41577-020-00488-6

- Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2022;65(12):1925-66. doi: 10.1007/s00125-022-05787-2

» https://doi.org/10.1007/s00125-022-05787-2

- Demmer RT, Holtfreter B, Desvarieux M, Jacobs DR, Kerner W, Nauck M, et al. The Influence of type 1 and type 2 diabetes on periodontal disease progression. Diabetes Care. 2012;35(10):2036-42. doi: 10.2337/dc11-2453

» https://doi.org/10.2337/dc11-2453

- Taylor GW, Burt BA, Becker MP, Genco RJ, Shlossman M. Glycemic control and alveolar bone loss progression in type 2 diabetes. Ann Periodontol. 1998;3(1):30-9. doi: 10.1902/annals.1998.3.1.30

» https://doi.org/10.1902/annals.1998.3.1.30

- Morita I, Inagaki K, Nakamura F, Noguchi T, Matsubara T, Yoshii S, et al. Relationship between periodontal status and levels of glycated hemoglobin. J Dent Res. 2012; 91(2):161-6. doi: 10.1177/0022034511431583

» https://doi.org/10.1177/0022034511431583

- Kocher T, König J, Borgnakke WS, Pink C, Meisel P. Periodontal complications of hyperglycemia/diabetes mellitus: epidemiologic complexity and clinical challenge. Periodontol 2000. 2018;78(1):59-97. doi: 10.1111/prd.12235

» https://doi.org/10.1111/prd.12235

- Cruz DF, Duarte PM, Figueiredo LC, Silva HD, Retamal-Valdes B, Feres M, et al. Metronidazole and amoxicillin for patients with periodontitis and diabetes mellitus: 5-year secondary analysis of a randomized controlled trial. J Periodontol. 2021;92(4):479-87. doi: 10.1002/JPER.20-0196

» https://doi.org/10.1002/JPER.20-0196

- El-Sharkawy H, Aboelsaad N, Eliwa M, Darweesh M, Alshahat M, Kantarci A, et al. Adjunctive treatment of chronic periodontitis with daily dietary supplementation with omega-3 fatty acids and low-dose aspirin. J Periodontol. 2010;81(11):1635-43. doi: 10.1902/jop.2010.090628

» https://doi.org/10.1902/jop.2010.090628

- Deore GD, Gurav AN, Patil R, Shete AR, NaikTari RS, Inamdar SP. Omega-3 fatty acids as a host modulator in chronic periodontitis patients: a randomised, double-blind, palcebo-controlled, clinical trial. J Periodontal Implant Sci. 2012;44(1):25. doi: 10.5051/jpis.2014.44.1.25

» https://doi.org/10.5051/jpis.2014.44.1.25

- Stando M, Piatek P, Namiecinska M, Lewkowicz P, Lewkowicz N. Omega-3 polyunsaturated fatty acids EPA and DHA as an adjunct to non-surgical treatment of periodontitis: a randomized clinical trial. Nutrients. 2020;12(9):2614. doi: 10.3390/nu12092614

» https://doi.org/10.3390/nu12092614

- Kruse AB, Kowalski CD, Leuthold S, Vach K, Ratka-Krüger P, Woelber JP. What is the impact of the adjunctive use of omega-3 fatty acids in the treatment of periodontitis? A systematic review and meta-analysis. Lipids Health Dis. 2020;19(1):100. doi: 10.1186/s12944-020-01267-x

» https://doi.org/10.1186/s12944-020-01267-x

- Castro dos Santos NC, Furukawa MV, Oliveira-Cardoso I, Cortelli JR, Feres M, Van Dyke T, et al. Does the use of omega-3 fatty acids as an adjunct to non-surgical periodontal therapy provide additional benefits in the treatment of periodontitis? A systematic review and meta-analysis. J Periodontal Res. 2022;57(3):435-47. doi: 10.1111/jre.12984

» https://doi.org/10.1111/jre.12984

- Van Ravensteijn MM, Timmerman MF, Brouwer EA, Slot DE. The effect of omega-3 fatty acids on active periodontal therapy: a systematic review and meta-analysis. J Clin Periodontol. 2022; 49(10):1024-37. doi: 10.1111/jcpe.13680

» https://doi.org/10.1111/jcpe.13680

- Senders JT, Staples PC, Karhade AV, Zaki MM, Gormley WB, Broekman MLD, et al. Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg. 2018;109:476-86.e1. doi: 10.1016/j.wneu.2017.09.149

» https://doi.org/10.1016/j.wneu.2017.09.149

- Sajjadian M, Lam RW, Milev R, Rotzinger S, Frey BN, Soares CN, et al. Machine learning in the prediction of depression treatment outcomes: a systematic review and meta-analysis. Psychol Med. 2021;51(16):2742-51. doi: 10.1017/S0033291721003871

» https://doi.org/10.1017/S0033291721003871

- Adeoye J, Tan JY, Choi SW, Thomson P. Prediction models applying machine learning to oral cavity cancer outcomes: a systematic review. Int J Med Inform. 2021;154:104557. doi: 10.1016/j.ijmedinf.2021.104557

» https://doi.org/10.1016/j.ijmedinf.2021.104557

Downloads

Published

2025-07-25 — Updated on 2025-08-29

Versions

Issue

Section

Original Articles

How to Cite

Castro dos Santos, N., Mangussi, A., Ribeiro, T., Silva, R. N. de B., Santamaria, M. P., Feres, M., Van Dyke, T., & Lorena, A. C. (2025). Factors influencing the response to periodontal therapy in patients with diabetes: post hoc analysis of a randomized clinical trial using machine learning. Journal of Applied Oral Science, 33, e20250211. https://doi.org/10.1590/1678-7757-2025-0211 (Original work published 2025)