Classification success of salivary interleukin-1β in periodontitis grading with artificial intelligence models: a cross-sectional observational study

Authors

DOI:

https://doi.org/10.1590/1678-7757-2024-0580

Keywords:

Artificial intelligence, Biomarkers, Classification, Periodontitis

Abstract

Objectives  Finding certain biomarkers and threshold values of periodontitis and incorporating them into classifications can further highlight its impact on systemic health. This cross-sectional observational study aims to evaluate the efficacy of some biomarkers in grading periodontitis using artificial intelligence (AI) models. Methodology  AI models were developed to automatically classify periodontal status (N=240) and grades in periodontitis patients (n=120) using Python based on sociodemographic, anthropometric, clinical, radiological, and biochemical attributes. A total of 35 serum levels of whole blood attributes (white blood cell (WBC), platelet, erythrocyte, neutrophil, lymphocyte counts, and mean platelet volume), lipid profile [triglycerides; high-, low-, and very low-density lipoproteins (HDL, LDL, VLDL), and total cholesterol levels], salivary and serum interleukin (IL)-1β and matrix metalloproteinase (MMP)-8 levels), and 11 other attributes were used in the current classification. Results  In total, 23 out of 46 attributes achieved a 0.967 classification accuracy, whereas nine, a 0.858 classification accuracy. Attributes such as WBC, serum IL- 1β, triglyceride/HDL ratio, neutrophil/lymphocyte ratio, and HDL were instrumental in periodontal status classification. HDL, LDL, neutrophil/lymphocyte ratio, total cholesterol, salivary IL-1β, and MMP-8 were key attributes in grading. Conclusions  AI models showed significant classification accuracy, particularly with serum and salivary IL-1β levels and other blood parameters, underscoring the potential of these biomarkers, which could be integrated into the current classification.

Downloads

Download data is not yet available.

References

- Lindhe J. Examination of patients with periodontal diseases. In: Textbook of clinical periodontology and implant dentistry. 5th ed. UK: Wiley Blackwell; 2008. p. 573-86.

- Tonetti MS, Jepsen S, Jin L, Otomo-Corgel J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol. 2017;44(5):456-62. doi: 10.1111/jcpe.12732

» https://doi.org/10.1111/jcpe.12732

- Savage A, Eaton KA, Moles DR, Needleman I. A systematic review of definitions of periodontitis and methods that have been used to identify this disease. J Clin Periodontol. 2009;36(6):458-567. doi: 10.1111/j.1600-051X.2009.01408.x

» https://doi.org/10.1111/j.1600-051X.2009.01408.x

- Elashiry M, Meghil MM, Arce RM, Cutler CW. From manual periodontal probing to digital 3-D imaging to endoscopic capillaroscopy: recent advances in periodontal disease diagnosis. J Periodontal Res. 2019;54(1):1-9. doi: 10.1111/jre.12585

» https://doi.org/10.1111/jre.12585

- Preianò M, Savino R, Villella C, Pelaia C, Terracciano R. Gingival crevicular fluid peptidome profiling in healthy and in periodontal diseases. Int J Mol Sci. 2020;21(15):5270. doi: 10.3390/ijms21155270

» https://doi.org/10.3390/ijms21155270

- Heitz-Mayfield LJ. Conventional diagnostic criteria for periodontal diseases (plaque- induced gingivitis and periodontitis). Periodontol 2000. 2024;95(1):10-9. doi: 10.1111/prd.12579

» https://doi.org/10.1111/prd.12579

- Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol. 2018;89(1):173-82. doi: 10.1002/JPER.17-0721

» https://doi.org/10.1002/JPER.17-0721

- Chapple ILC, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol. 2018;89(1):74-84. doi: 10.1002/JPER.17-0719

» https://doi.org/10.1002/JPER.17-0719

- Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Periodontol. 2018;89(1):159-72. doi: 10.1002/jper.10239

» https://doi.org/10.1002/jper.10239

- Blanco-Pintos T, Regueira-Iglesias A, Seijo-Porto I, Balsa-Castro C, Castelo-Baz P, Nibali L, etal. Accuracy of periodontitis diagnosis obtained using multiple molecular biomarkers in oral fluids: a systematic review and meta-analysis. J Clin Periodontol. 2023;50(11):1420-43. doi: 10.1111/jcpe.13854

» https://doi.org/10.1111/jcpe.13854

- Ebersole JL, Hasturk H, Huber M, Gellibolian R, Markaryan A, Zhang XD, et al. Realizing the clinical utility of saliva for monitoring oral diseases. Periodontol 2000. 2024;95(1):203-19. doi: 10.1111/prd.12581

» https://doi.org/10.1111/prd.12581

- Pitchika V, Büttner M, Schwendicke F. Artificial intelligence and personalized diagnostics in periodontology: a narrative review. Periodontol 2000. 2024;95(1):220-31. doi: 10.1111/prd.12586

» https://doi.org/10.1111/prd.12586

- Löe H. The gingival index, the plaque index and the retention index systems. J Periodontol. 1967;38(6):610-706. doi: 10.1902/jop.1967.38.6.610

» https://doi.org/10.1902/jop.1967.38.6.610

- Loe H, Silness J. Periodontal disease in pregnancy. i. prevalence and severity. Acta Odontol Scand. 1963;21:533-51. doi: 10.3109/00016356309011240

» https://doi.org/10.3109/00016356309011240

- Lobene RR, Weatherford T, Ross NM, Lamm RA, Menaker L. A modified gingival index for use in clinical trials. Clin Prev Dent. 1986;8(1):3-6.

- Nesse W, Abbas F, van der Ploeg I, Spijkervet FK, Dijkstra PU, Vissink A. Periodontal inflamed surface area: quantifying inflammatory burden. J Clin Periodontol. 2008;35(8):668-73. doi: 10.1111/j.1600-051X.2008.01249.x

» https://doi.org/10.1111/j.1600-051X.2008.01249.x

-Pence I, Kumas K, Siseci M, Akyuz A. Detailed analysis of Türkiye's agricultural biomass-based energy potential with machine learning algorithms based on environmental and climatic conditions. Clean Technol Envir. 2024;26:4177-95 doi: 10.1007/s10098-024-02822-1

» https://doi.org/10.1007/s10098-024-02822-1

- Gaffar S, Tayara H, Chong KT. Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework. Comput Biol Med. 2024;174:108438. doi: 10.1016/j.compbiomed.2024.108438

» https://doi.org/10.1016/j.compbiomed.2024.108438

- Chang HJ, Lee SJ, Yong TH, Shin NY, Jang BG, Kim JE, et al. Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis. Sci Rep. 2020;10(1):7531. doi: 10.1038/s41598-020-64509-z

» https://doi.org/10.1038/s41598-020-64509-z

- Jiang L, Chen D, Cao Z, Wu F, Zhu H, Zhu F. A two-stage deep learning architecture for radiographic staging of periodontal bone loss. BMC Oral Health. 2022;22(1):106. doi: 10.1186/s12903-022-02119-z

» https://doi.org/10.1186/s12903-022-02119-z

- Tsoromokos N, Parinussa S, Claessen F, Moin DA, Loos BG. Estimation of alveolar bone loss in periodontitis using machine learning. Int Dent J. 2022;72(5):621-7. doi: 10.1016/j.identj.2022.02.009

» https://doi.org/10.1016/j.identj.2022.02.009

- Uzun Saylan BC, Baydar O, Yesilova E, Kurt Bayrakdar S, Bilgir E, Bayrakdar IS, et al. Assessing the effectiveness of artificial intelligence models for detecting alveolar bone loss in periodontal disease: a panoramic radiograph study. Diagnostics (Basel). 2023;13(10):1800. doi: 10.3390/diagnostics13101800

» https://doi.org/10.3390/diagnostics13101800

- Mladinov D, Godwin RC, Benz D, Folorunso IM, Berkowitz DE, Melvin RL. The Impact of blood pressure below personalized lower cerebral autoregulation limit on outcomes after cardiac surgery: a retrospective study. J Cardiothorac Vasc Anesth. 2025;39(3):601-9. doi: 10.1053/j.jvca.2024.12.019

» https://doi.org/10.1053/j.jvca.2024.12.019

- Murakami T, Takahata Y, Hata K, Nishimura R. Role of interleukin-1 and inflammasomes in oral disease. J Oral Biosci. 2020;62(3):242-8. doi: 10.1016/j.job.2020.07.003

» https://doi.org/10.1016/j.job.2020.07.003

- Ehteshami A, Shirban F, Bagherniya M, Sathyapalan T, Jamialahmadi T, Sahebkar A. The Association between High-density Lipoproteins and Periodontitis. Curr Med Chem. 2024;31(39):6407-28. doi: 10.2174/0929867331666230726140736

» https://doi.org/10.2174/0929867331666230726140736

- Li W, Liang Y, Zhang X, Liu C, He L, Miao L, et al. A deep learning approach to automatic gingivitis screening based on classification and localization in RGB photos. Sci Rep. 2021;11(1):16831. doi: 10.1038/s41598-021-96091-3

» https://doi.org/10.1038/s41598-021-96091-3

- Acharya AB, Shetty IP, Jain S, Padakannaya I, Acharya S, Shettar L, et al. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in chronic periodontitis before and after nonsurgical therapy. J Indian Soc Periodontol. 2019;23(5):419-23. doi: 10.4103/jisp.jisp_622_18

» https://doi.org/10.4103/jisp.jisp_622_18

- Mirzaei A, Shahrestanaki E, Malmir H, Ejtahed HS, Tajbakhsh D, Seif E, et al. Association of periodontitis with lipid profile: an updated systematic review and meta- analysis. J Diabetes Metab Disord. 2022;21(2):1377-93. doi: 10.1007/s40200-022- 01071-7

» https://doi.org/10.1007/s40200-022- 01071-7

- Nedzi-Góra M, Górska R, Górski B. Is the progression rate of periodontitis related to subgingival biofilm composition or gingival crevicular fluid IL-1ß and MMP-8 concentrations? Cent Eur J Immunol. 2020;45(4):425-32. doi: 10.5114/ceji.2020.101256

» https://doi.org/10.5114/ceji.2020.101256

- Ertas K, Pence I, Cesmeli MS, Ay ZY. Determination of the stage and grade of periodontitis according to the current classification of periodontal and peri-implant diseases and conditions (2018) using machine learning algorithms. J Periodontal Implant Sci. 2023;53(1):38-53. doi: 10.5051/jpis.2201060053

» https://doi.org/10.5051/jpis.2201060053

Downloads

Published

2025-08-08

Issue

Section

Original Articles

How to Cite

Uzar, E., Pence, I., Cesmeli, M. S., & Yetkin Ay, Z. (2025). Classification success of salivary interleukin-1β in periodontitis grading with artificial intelligence models: a cross-sectional observational study. Journal of Applied Oral Science, 33, e20240580. https://doi.org/10.1590/1678-7757-2024-0580