Bee venom exhibits anti-cancer effects on tongue carcinoma cells by arresting cell cycle, inducing apoptosis, and suppressing cell migration

Authors

DOI:

https://doi.org/10.1590/1678-7757-2025-0188

Keywords:

Apitoxin, Apis mellifera, Cancer therapy, Honeybee

Abstract

Objective  Tongue squamous cell carcinoma (TSCC) is an aggressive oral cancer with notable treatment resistance. This in vitro study investigated anti-cancer effects of honey bee venom (BV)—a mixture of bioactive compounds—on the human TSCC cell line. Methodology  The cytotoxicity of serial BV concentrations (0.01–100 µg/mL) was tested on the cultured human TSCC cell line (HNO-97) to determine the half-maximal inhibitory concentration (IC50) value. Group I (BV) included cells treated with IC50 of BV, and Group II (control) received no treatment; both were incubated for 48 hours. The apoptotic effect of BV was evaluated using the Annexin V assay and the BAX and BCL-2 gene expression. The BV effect on cell viability, proliferation, and division was evaluated by cell cycle assay. Additionally, Transwell migration assays were performed to demonstrate the potential impact of BV on cell migration. Results  BV showed dose-dependent cytotoxicity and anti-proliferative activity on HNO-97 cells (IC50: 12.96 μg/mL). The treated group exhibited cell cycle arrest, reduced cell migration, significantly decreased BCL-2 gene expression (p=0.001), and increased BAX gene expression (p=0.03) compared to the untreated group. Conclusion  BV demonstrated anti-cancer activity on human TSCC by inducing apoptosis and inhibiting cell migration. These findings warrant further preclinical investigations to evaluate BV as an alternative for current tongue carcinoma therapies.

Downloads

Download data is not yet available.

References

- Ng JH, Iyer NG, Tan M, Edgren G. Changing epidemiology of oral squamous cell carcinoma of the tongue: a global study. Head Neck. 2017;39(2):297-304. doi: 10.1002/hed.24589

» https://doi.org/10.1002/hed.24589

- Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30(1):87. doi: 10.1186/1756-9966-30-87

» https://doi.org/10.1186/1756-9966-30-87

- Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun. 2018;500(1):26-34. doi: 10.1016/j.bbrc.2017.06.190

» https://doi.org/10.1016/j.bbrc.2017.06.190

- Sha J, Bai Y, Ngo HX, Okui T, Kanno T. Overview of evidence-based chemotherapy for oral cancer: focus on drug resistance related to the epithelial-mesenchymal transition. Biomolecules. 2021;11(6):893. doi: 10.3390/biom11060893

» https://doi.org/10.3390/biom11060893

- Szturz P, Vermorken JB. Management of recurrent and metastatic oral cavity cancer: Raising the bar a step higher. Oral Oncol. 2020;101:104492. doi: 10.1016/j.oraloncology.2019.104492

» https://doi.org/10.1016/j.oraloncology.2019.104492

- Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, et al. Natural products as anticancer agents: current status and future perspectives. Molecules. 2022;27(23):8367. doi: 10.3390/molecules27238367

» https://doi.org/10.3390/molecules27238367

- Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, Propolis, and Royal Jelly: a comprehensive review of their biological actions and health benefits. Oxid Med Cell Longev. 2017;2017(1). doi: 10.1155/2017/1259510

» https://doi.org/10.1155/2017/1259510

- Frangieh J, Salma Y, Haddad K, Mattei C, Legros C, Fajloun Z, et al. First characterization of the venom from apis mellifera syriaca, a honeybee from the middle east region. Toxins (Basel). 2019;11(4):191. doi: 10.3390/toxins11040191

» https://doi.org/10.3390/toxins11040191

- Stela M, Cichon N, Splawska A, Szyposzynska M, Bijak M. Therapeutic potential and mechanisms of bee venom therapy: a comprehensive review of apitoxin applications and safety enhancement strategies. Pharmaceuticals. 2024;17(9):1211. doi: 10.3390/ph17091211

» https://doi.org/10.3390/ph17091211

- Malek A, Strzemski M, Kurzepa J, Kurzepa J. Can bee venom be used as anticancer agent in modern medicine? Cancers (Basel). 2023;15(14):3714. doi: 10.3390/cancers15143714

» https://doi.org/10.3390/cancers15143714

- Grawish ME, Mourad MI, Esmaeil DA, Ahmed RA, Ateia IM, Hany E, et al. Emerging therapeutic modality enhancing the efficiency of chemotherapeutic agents against head and neck squamous cell carcinoma cell lines. Cancer Treat Res Commun. 2020;25:100242. doi: 10.1016/j.ctarc.2020.100242

» https://doi.org/10.1016/j.ctarc.2020.100242

- Amar S, El-Bolok AH, El-Gayar SF, Sholkamy MI. Synergistic cytotoxic effect of honey bee venom and cisplatin on tongue squamous cell carcinoma cell line. Open Access Maced J Med Sci. 2021;9(B):1739-1744. doi: 10.3889/oamjms.2021.7672

» https://doi.org/10.3889/oamjms.2021.7672

- Turillazzi F, Pieraccini G, Turillazzi S, Orsi Battaglini N, Severino M. Venom collection by electrical stimulation in the invasive species polistes dominula reared using a vespiculture regime. Molecules. 2022;27(24):8821. doi: 10.3390/molecules27248821

» https://doi.org/10.3390/molecules27248821

- Gajski G, Leonova E, Sjakste N. Bee venom: composition and anticancer properties. Toxins (Basel). 2024;16(3):117. doi: 10.3390/toxins16030117

» https://doi.org/10.3390/toxins16030117

- Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the mtt assay. Cold Spring Harb Protoc. 2018;2018(6):pdb.prot095505. doi: 10.1101/pdb.prot095505

» https://doi.org/10.1101/pdb.prot095505

- Hazekawa M, Nishinakagawa T, Kawakubo-Yasukochi T, Nakashima M. Evaluation of IC50 levels immediately after treatment with anticancer reagents using a real-time cell monitoring device. Exp Ther Med. 2019;18(4):3197-205. doi: 10.3892/etm.2019.7876

» https://doi.org/10.3892/etm.2019.7876

- Kim KH, Sederstrom JM. Assaying cell cycle status using flow cytometry. Curr Protoc Mol Biol. 2015;111(1). doi: 10.1002/0471142727.mb2806s111

» https://doi.org/10.1002/0471142727.mb2806s111

- Wilkins RC, Kutzner BC, Truong M, Sanchez-Dardon J, McLean JR. Analysis of radiation-induced apoptosis in human lymphocytes: flow cytometry using annexin V and propidium iodide versus the neutral comet assay. Cytometry. 2002;48(1):14-9. doi: 10.1002/cyto.10098

» https://doi.org/10.1002/cyto.10098

- Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1(3):1559-82. doi: 10.1038/nprot.2006.236

» https://doi.org/10.1038/nprot.2006.236

- Kuang J, Yan X, Genders AJ, Granata C, Bishop DJ. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. PLoS One. 2018;13(5):e0196438. doi: 10.1371/journal.pone.0196438

» https://doi.org/10.1371/journal.pone.0196438

- Pijuan J, Barceló C, Moreno DF, et al. In vitro cell migration, invasion, and adhesion assays: from cell imaging to data analysis. Front Cell Dev Biol. 2019;7. doi: 10.3389/fcell.2019.00107

» https://doi.org/10.3389/fcell.2019.00107

- Ve A, Dergisi D, Karabulut S, Celik Uzuner S. A preliminary study: the selective effect of bee venom on inhibition of cell migration in metastatic breast cancer cells over normal cells in comparison with cisplatin. J Apither Nat. 2020;3(2):87-98. doi: 10.35206/JAN.835042

» https://doi.org/10.35206/JAN.835042

- Tetikoglu S, Akcan M, Uzuner U, Uzuner SC. Selective anastasis induction by bee venom in normal cells: a promising strategy for breast cancer therapy with minimal impact on normal cell viability. bioRxiv 2024.02.18.579605; doi: https://doi.org/10.1101/2024.02.18.579605 preprint

» https://doi.org/10.1101/2024.02.18.579605

- Zheng J, Lee HL, Ham YW, Song HS, Song MJ, Hong JT. Anti-cancer effect of bee venom on colon cancer cell growth by activation of death receptors and inhibition of nuclear factor kappa B. Oncotarget. 2015;6(42):44437-51. doi: 10.18632/oncotarget.6295

» https://doi.org/10.18632/oncotarget.6295

- Gülmez Y, Aydin A, Can I, Tekin S, Cacan E. Cellular toxicity and biological activities of honey bee (Apis mellifera L.) venom. Marmara Pharm J. 2017;21(2):251-251. doi: 10.12991/marupj.300329

» https://doi.org/10.12991/marupj.300329

- Zidan H, Mostafa Z, Ibrahim M, Haggag S, Darwish D, Elfiky A. Venom composition of egyptian and carniolan honeybee, apis mellifera l. affected by collection methods. Egypt Acad J Biol Sci A, Entomol. 2018;11(4):59-71. doi: 10.21608/EAJBSA.2018.17733

» https://doi.org/10.21608/EAJBSA.2018.17733

- Perrotti V, Caponio VCA, Muzio L Lo, et al. Open questions in cold atmospheric plasma treatment in head and neck cancer: a systematic review. Int J Mol Sci. 2022;23(18):10238. doi: 10.3390/IJMS231810238/S1

» https://doi.org/10.3390/IJMS231810238/S1

- Badria F, Fathy H, Fatehe A, Elimam D, Ghazy M. Evaluate the cytotoxic activity of honey, propolis, and bee venom from different localities in Egypt against liver, breast, and colorectal cancer. J Apither. 2017;2(1):1. doi: 10.5455/ja.20170203075953

» https://doi.org/10.5455/ja.20170203075953

- Davy C, Doorbar J. G2/M cell cycle arrest in the life cycle of viruses. Virology. 2007;368(2):219-26. doi:10.1016/j.virol.2007.05.043

» https://doi.org/10.1016/j.virol.2007.05.043

- Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26(9):1324-37. doi: 10.1038/sj.onc.1210220

» https://doi.org/10.1038/sj.onc.1210220

- Kong GM, Tao WH, Diao YL, et al. Melittin induces human gastric cancer cell apoptosis via activation of mitochondrial pathway. World J Gastroenterol. 2016;22(11):3186. doi: 10.3748/WJG.V22.I11.3186

» https://doi.org/10.3748/WJG.V22.I11.3186

- Moon DO, Park SY, Choi YH, Kim ND, Lee C, Kim GY. Melittin induces Bcl-2 and caspase-3-dependent apoptosis through downregulation of Akt phosphorylation in human leukemic U937 cells. Toxicon. 2008;51(1):112-20. doi: 10.1016/j.toxicon.2007.08.015

» https://doi.org/10.1016/j.toxicon.2007.08.015

- Zhang SF, Chen Z. Melittin exerts an antitumor effect on non-small cell lung cancer cells. Mol Med Rep. 2017;16(3):3581-6. doi: 10.3892/mmr.2017.6970

» https://doi.org/10.3892/mmr.2017.6970

- Kim DH, Lee HW, Park HW, Lee HW, Chun KH. Bee venom inhibits the proliferation and migration of cervical-cancer cells in an HPV E6/E7-dependent manner. BMB Rep. 2020;53(8):419-24. doi:10.5483/BMBRep.2020.53.8.031

» https://doi.org/10.5483/BMBRep.2020.53.8.031

- Jo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, et al. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol. 2012;258(1):72-81. doi: 10.1016/j.taap.2011.10.009

» https://doi.org/10.1016/j.taap.2011.10.009

- Mahmoodzadeh A, Zarrinnahad H, Bagheri KP, Moradia A, Shahbazzadeh D. First report on the isolation of melittin from Iranian honey bee venom and evaluation of its toxicity on gastric cancer AGS cells. J Chin Med Assoc. 2015;78(10):574-83. doi: 10.1016/j.jcma.2015.06.008

» https://doi.org/10.1016/j.jcma.2015.06.008

- Zhang SF, Chen Z. Melittin exerts an antitumor effect on non-small cell lung cancer cells. Mol Med Rep. 2017;16(3):3581-6. doi:10.3892/mmr.2017.6970

» https://doi.org/10.3892/mmr.2017.6970

- Pandey P, Khan F, Khan MA, Kumar R, Upadhyay TK. An updated review summarizing the anticancer efficacy of melittin from bee venom in several models of human cancers. Nutrients. 2023;15(14):3111. doi: 10.3390/nu15143111

» https://doi.org/10.3390/nu15143111

- Salem AZ, Bedair ES, Hablas WR, Elfiky AA, Hussein BI. The antibacterial activity of bee venom on selected pathogenic bacteria. Egyp Acad J Biol Sci G Microbiol. 2015;7(1):69-75. doi: 10.21608/eajbsg.2015.16487

» https://doi.org/10.21608/eajbsg.2015.16487

Downloads

Published

2025-08-11

Issue

Section

Original Articles

How to Cite

Sabry, E., Zayed, H. M., Ezzatt, O. M., Fathy, I., Elsayeh, H.-A. S., El-Khazragy, N., & Ibrahim, S. S. (2025). Bee venom exhibits anti-cancer effects on tongue carcinoma cells by arresting cell cycle, inducing apoptosis, and suppressing cell migration. Journal of Applied Oral Science, 33, e20250188. https://doi.org/10.1590/1678-7757-2025-0188