Intra-familial phenotype variant in hypoplastic amelogenesis imperfecta under a complex genetic component: a family report, whole-exome sequencing, and literature review
DOI:
https://doi.org/10.1590/1678-7757-2024-0489Keywords:
Amelogenesis Imperfecta, Enamel, Tooth, Gene, ENAMAbstract
Amelogenesis imperfecta (AI) encompasses a group of conditions characterized by abnormalities in the development or function of tooth enamel. Clinical manifestations include different forms and degrees of enamel frailty, associated with sensitivity, tooth fractures, stains, abnormal tooth morphology, missing teeth, etc. AI is genetically heterogeneous, with over 70 genes associated with autosomal dominant, autosomal recessive, X-linked, and oligogenic inheritance. Objective To identify genetic variants associated with AI in a single family. Methodology We describe the clinical findings of a family affected by AI, composed of five individuals: four affected (the father and three daughters) and one unaffected (the mother). The observed segregation pattern suggests a dominant, X-linked inheritance. Genetic variants were screened using whole-exome sequencing. The initial bioinformatic analysis was conducted using Qiagen QCI, and variants were selected based on their presence in all four affected family members and absence in the unaffected mother. Search terms included “amelogenesis imperfecta,” “tooth,” and “enamel.” Several types of software were used to classify variants according to pathogenicity. Results Candidate variants were identified in six genes. Three of these variants were detected in autosomal genes: NM_031889.3(ENAM):c.1726T>C (p.F576L), NM_022168.4(IFIH1):c.1764dupA, (p.A589fs*21), and NM_032383.5(HPS3):c.1897A>T (p.M633L). Three variants were detected in X-linked genes: NM_006150.5(PRICKLE3):c.8C>G (p.A3G), NM_004484.4(GPC3):c.584A>G (p.N195S), and NM_152787.5(TAB3):c.1936G>A (p.V646M). None of these variants were classified as pathogenic or likely pathogenic in AI. Discussion Among the identified genes, only ENAM has previously been associated with AI; however, IFIH1, PRICKLE3, and GPC3 are associated with dental/enamel development. The relatively high number of candidate genes and variants detected may reflect an oligogenic component already proposed for AI. Conclusions This study provides a set of new candidate genes and genetic variants for AI. Despite sharing the same variants, AI-affected family members show considerable phenotypic variant, suggesting the involvement of non-shared genetic or environmental factors.
Downloads
References
- Bloch-Zupan A, Rey T, Jimenez-Armijo A, Kawczynski M, Kharouf N, O-Rare consortium, Dure-Molla M, et al. Amelogenesis imperfecta: next-generation sequencing sheds light on Witkop's classification. Front Physiol. 2023;9(14):1130175. doi:10.3389/fphys.2023.1130175
» https://doi.org/10.3389/fphys.2023.1130175
- Smith CE, PoulterJA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, et al. Amelogenesis imperfecta; genes, proteins and pathways. Front Physiol. 2017;26(8):435. doi: 10.3389/fphys.2017.00435
» https://doi.org/10.3389/fphys.2017.00435
- Broutin A, Bidi-Lebihan AK, Canceill T, Vaysse F, Bloch-Zupan A, Bailleul-Forestier I, et al. Association between malocclusions and amelogenesis imperfecta genotype and phenotype: a systematic review. Int Orthod. 2023;21(4):100789. doi: 10.1016/j.ortho.2023.100789
» https://doi.org/10.1016/j.ortho.2023.100789
- Witkop CJ. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol. 1988;17(9-10):547-53. doi: 10.1111/j.1600-0714.1988.tb01332.x
» https://doi.org/10.1111/j.1600-0714.1988.tb01332.x
- Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. doi: 10.1038/gim.2015.30
» https://doi.org/10.1038/gim.2015.30
- Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020;22(2):245-57. doi: 10.1038/s41436-019-0686-8. Erratum in: Genet Med. 2021;23(11):2230. doi: 10.1038/s41436-021-01150-9.7.
» https://doi.org/10.1038/s41436-019-0686-8
- Reza Khami M, Asgari S, Valizadeh S, Karami J, Rezaei A, Rezaei N. AMELX and ENAM Polymorphisms and Dental Caries. Int J Dent. 2022;31:2022:8501179. doi: 10.1155/2022/8501179
» https://doi.org/10.1155/2022/8501179
- Nagy E, Maquat LE. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci. 1998;23(6):198-9. doi: 10.1016/s0968-0004(98)01208-0
» https://doi.org/10.1016/s0968-0004(98)01208-0
- Mårdh CK, Backman B, Holmgren G, Hu JC-C, Simmer JP, Forsman-Semb K. A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2). Hum Mol Genet. 2002;11(9):1069-74. doi: 10.1093/hmg/11.9.1069
» https://doi.org/10.1093/hmg/11.9.1069
- Kim JW, Simmer JP, Lin BP, Seymen F, Bartlett JD, Hu JC. Mutational analysis of candidate genes in 24 amelogenesis imperfecta families. Eur J Oral Sci. 2006;114 (Suppl 1):3-12; discussion 39-41, 379. doi: 10.1111/j.1600-0722.2006.00278.x
» https://doi.org/10.1111/j.1600-0722.2006.00278.x
- Hu JC, Yamakoshi Y. Enamelin and autosomal-dominant amelogenesis imperfecta. Crit Rev Oral Biol Med. 2003;14(6):387-98. doi:10.1177/154411130301400602
- Shore RC, Bäckman B, Elcock C, Brook AH, Brookes SJ, Kirkham J. The structure and composition of deciduous enamel affected by local hypoplastic autosomal dominant amelogenesis imperfecta resulting from an ENAM mutation. Cells Tissues Organs. 2010;191(4):301-6. doi: 10.1159/000258703
» https://doi.org/10.1159/000258703
- Hart TC, Hart PS, Gorry MC, Michalec MD, Ryu OH, Uygur C, et al. Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects. J Med Genet. 2003;40(12):900-6. doi: 10.1136/jmg.40.12.900
» https://doi.org/10.1136/jmg.40.12.900
- Kang HY, Seymen F, Lee SK, Yildirim M, Tuna EB, Patir A, et al. Candidate gene strategy reveals ENAM mutations. J Dent Res. 2009;88(3):266-9. doi: 10.1177/0022034509333180
» https://doi.org/10.1177/0022034509333180
- Dashash M, Bazrafshani MR, Poulton K, Jaber S, Naeem E, Blinkhorn AS. Enamelin/ameloblastin gene polymorphisms in autosomal amelogenesis imperfecta among Syrian families. J Investig Clin Dent. 2011;2(1):16-22. doi: 10.1111/j.2041-1626.2010.00038.x
» https://doi.org/10.1111/j.2041-1626.2010.00038.x
- Wang X, Zhao Y, Yang Y, Qin M. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta. PLoS One. 2015;13;10(3):e0116514. doi: 10.1371/journal.pone.0116514
» https://doi.org/10.1371/journal.pone.0116514
- Koruyucu M, Kang J, Kim YJ, Seymen F, Kasimoglu Y, Lee ZH, et al. Hypoplastic AI with highly variable expressivity caused by ENAM mutations. J Dent Res. 2018;97(9):1064-9. doi: 10.1177/0022034518763152
» https://doi.org/10.1177/0022034518763152
- Zhang H, Hu Y, Seymen F, Koruyucu M, Kasimoglu Y, Wang SK, et al. ENAM mutations and digenic inheritance. Mol Genet Genomic Med. 2019;7(10):e00928. doi: 10.1002/mgg3.928
» https://doi.org/10.1002/mgg3.928
- Yu S, Zhang C, Zhu C, Quan J, Liu D, Wang X, et al. A novel ENAM mutation causes hypoplastic amelogenesis imperfecta. Oral Dis. 2022;28(6):1610-9. doi: 10.1111/odi.13877
» https://doi.org/10.1111/odi.13877
- Hart PS, Michalec MD, Seow WK, Hart TC, Wright JT. Identification of the enamelin (g.8344delG) mutation in a new kindred and presentation of a standardized ENAM nomenclature. Arch Oral Biol. 2003;48(8):589-96. doi: 10.1016/s0003-9969(03)00114-6
» https://doi.org/10.1016/s0003-9969(03)00114-6
- Gutierrez SJ, Chaves M, Torres DM, Briceño I. Identification of a novel mutation in the enamalin gene in a family with autosomal-dominant amelogenesis imperfecta. Arch Oral Biol. 2007;52(5):503-6. doi: 10.1016/j.archoralbio.2006.09.014
» https://doi.org/10.1016/j.archoralbio.2006.09.014
- Chan HC, Mai L, Oikonomopoulou A, Chan HL, Richardson AS, Wang SK, et al. Altered enamelin phosphorylation site causes amelogenesis imperfecta. J Dent Res. 2010;89(7):695-9. doi:10.1177/0022034510365662
- Lindemeyer RG, Gibson CW, Wright TJ. Amelogenesis imperfecta due to a mutation of the enamelin gene: clinical case with genotype-phenotype correlations. Pediatr Dent. 2010;32(1):56-60.
- Song YL, Wang CN, Zhang CZ, Yang K, Bian Z. Molecular characterization of amelogenesis imperfecta in Chinese patients. Cel Tissues Organs. 2012;196(3):271-9. doi: 10.1159/000334210
» https://doi.org/10.1159/000334210
- Simmer SG, Estrella NM, Milkovich RN, Hu JC. Autosomal dominant amelogenesis imperfecta associated with ENAM frameshift mutation p.Asn36Ilefs56. Clin Genet. 2012;83(2):195-7. doi: 10.1111/j.1399-0004.2012.01887.x
» https://doi.org/10.1111/j.1399-0004.2012.01887.x
- Seymen F, Lee KE, Koruyucu M, Gencay K, Bayram M, Tuna EB, et al. ENAM mutations with incomplete penetrance. J Dent Res. 2014;93(10):988-92. doi: 10.1177/0022034514548222
» https://doi.org/10.1177/0022034514548222
- Kim YJ, Lee Y, Zhang H, Wright JT, Simmer JP, Hu JC, et al. Translational attenuation by an Intron retention in the 5' UTR of ENAM causes amelogenesis imperfecta. Biomedicines. 2021;9(5):456. doi: 10.3390/biomedicines9050456
» https://doi.org/10.3390/biomedicines9050456
- Zhang Z, Zou X, Feng L, Huang Y, Chen F, Sun K, et al. Splicing mutations in AMELX and ENAM cause amelogenesis imperfecta. BMC Oral Health. 2023;23(1):893. doi: 10.1186/s12903-023-03508-8
» https://doi.org/10.1186/s12903-023-03508-8
- Pavlic A, Petelin M, Battelino T. Phenotype and enamel ultrastructure characteristics in patients with ENAM gene mutations g.13185-13186insAG and 8344delG. Arch Oral Biol. 2007;52(3):209-17. doi: 10.1016/j.archoralbio.2006.10.010
» https://doi.org/10.1016/j.archoralbio.2006.10.010
- Pavlic A, Battelino T, Trebusak Podkrajsek K, Ovsenik M. Craniofacial characteristics and genotypes of amelogenesis imperfecta patients. Eur J Orthod. 2011;33(3):325-31. doi: 10.1093/ejo/cjq089
» https://doi.org/10.1093/ejo/cjq089
- Urzúa OB, Ortega PA, Rodríguez ML, Morales BI. Analisis genético, clínico y molecular de una familia afectada con una malformación del esmalte dental [Genetic, clinical and molecular analysis of a family affected by amelogenesis imperfecta]. Rev Méd Chile. 2005;133(11):1331-40. Spanish. doi: 10.4067/s0034-98872005001100009
» https://doi.org/10.4067/s0034-98872005001100009
- Wang S-K, Zhang H, Wang Y-L, Seymen F, Koruyucu M, Simmer JP, et al. Phenotypic variability in LAMA3-associated amelogenesis imperfecta. Oral Dis. 2023;29(8):3514-24. doi: 10.1111/odi.14425
» https://doi.org/10.1111/odi.14425
- Rutsch F, MacDougall M, Lu C, Buers I, Mamaeva O, Nitschke Y, et al. A Specific IFIH1 gain-of-function mutation causes singleton-merten syndrome. Am J Hum Genet. 2015;96(2):275-82. doi: 10.1016/j.ajhg.2014.12.014
» https://doi.org/10.1016/j.ajhg.2014.12.014
- Mian M, Ranjitkar S, Townsend GC, Anderson PJ. Alterations in mandibular morphology associated with glypican 1 and glypican 3 gene mutations. Orthod Craniofac Res. 2017;20(3):183-7. doi: 10.1111/ocr.12170
» https://doi.org/10.1111/ocr.12170
- Thomason PA, Corbyn R, Lilla S, Sumpton D, Gilbey T, Insall RH. Biogenesis of lysosome-related organelles complex-2 is an evolutionarily ancient proto-coatmer complex. Curr Biol. 2024;34(15):3564-81.e6. doi: 10.1016/j.cub.2024.06.08
» https://doi.org/10.1016/j.cub.2024.06.08
- Chu C-W, Ossipova O, Ioannou A, Sokol SY. Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. Sci Rep. 2016;6:24104. doi: 10.1038/srep24104
» https://doi.org/10.1038/srep24104
- Luo J, Tan X, Ye L, Wang C. C-Jun N-terminal kinase (JNK) pathway activation is essential for dental papilla cells polarization. PLoS One. 2021;16(3):e0233944. doi: 10.1371/journal.pone.0233944
» https://doi.org/10.1371/journal.pone.0233944
- Nishikawa S, Kawamoto T. Localization of core planar cell polarity proteins, prickles, in ameloblasts of rat incisors: possible regulation of enamel rod decussation. Acta Histochem Cytochem. 2015;48(2):37-45. doi: 10.1267/ahc.1404639
» https://doi.org/10.1267/ahc.1404639
- Polley S, Louzada S, Forni D, Sironi M, Balaskas T, Hains DS, et al. Evolution of the rapidly mutating human salivary agglutinin gene (DMBT1) and population subsistence strategy. Proc Natl Acad Sci U S A. 2015;112(16):5105-10. doi: 10.1073/pnas.1416531112
» https://doi.org/10.1073/pnas.1416531112
- Kurt-Bayrakdar S, Ozturk A, Kara N. DEFB4A promoter polymorphism is associated with chronic periodontitis: a case-control study. Genet Test Mol Biomarkers. 2020;24(3):113-9. doi: 10.1089/gtmb.2019.0218
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Célia Regina Moreira Lanza, Artur Melo Rodrigues, Iasmin Fonseca Tolentino Mascarenhas, Talita Roberta Ferreira de Souza, Matheus Oliveira Reis, Felipe Morando Avelar, Maria Raquel Santos Carvalho, Vasco Ariston Carvalho de Azevedo, Debmalya Barh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.