Estrogen versus bone marrow mesenchymal stromal cells in the regeneration of the parotid gland in ovariectomized rats
DOI:
https://doi.org/10.1590/1678-7757-2025-0374Keywords:
Caspase 3, Estrogen, Menopause, BM-MSCs, OvariectomyAbstract
Menopause causes specific hormonal alterations in women that make them more susceptible to salivary changes, such as decreased saliva flow, which can lead to xerostomia, modified taste, and a burning sensation in the mouth. Objectives This study aimed to determine which of two treatments—bone marrow-derived mesenchymal stromal cells (BM-MSCs) or estrogen—more effectively ameliorate the postmenopausal degenerative effects on the parotid salivary glands of ovariectomized rats by histological, immunohistochemical, and malondialdehyde (MDA) evaluations. Methodology The study specimen involved 70 female albino rats. Group I received saline, and were subdivided into sham-operated and vehicle-treated. Group II was subjected to bilateral ovariectomy and received no treatment. Group III was subjected to bilateral ovariectomy and, one week later, treatment with subcutaneous injections of 1 mg/kg/daily estrogen for 12 weeks. Group IV underwent bilateral ovariectomy and, one week later, received a single intraglandular injection of a BM-MSC solution. At the end of the experiment, the rats were euthanized, and their parotid glands were dissected and processed for H&E stain, caspase 3, and MDA evaluations. Results The histological and immunohistochemical findings in Group II showed marked degenerative changes in the parotid gland. However, in Groups III and IV, regeneration was observed following treatment with estrogen and BM-MSCs, respectively. The estrogen and BM-MSCs groups showed significant decrease in MDA levels in the parotid gland relative to the ovariectomized group and nearly comparable to control. Conclusion BM-MSCs and estrogen show histological efficacy in regenerating the parotid salivary glands of ovariectomized rats.
Downloads
References
- Hodis HN, Mack WJ. Menopausal hormone replacement therapy and reduction of all-cause mortality and cardiovascular disease: it is about time and timing. Cancer J. 2022;28(3):208-23. doi: 10.1097/PPO.0000000000000591
» https://doi.org/10.1097/PPO.0000000000000591
- Meurman JH, Tarkkila L, Tiitinen A. The menopause and oral health. Maturitas. 2009;63(1):56-62. doi: 10.1016/j.maturitas.2009.02.009
» https://doi.org/10.1016/j.maturitas.2009.02.009
- Piché ME, Weisnagel SJ, Corneau L, Nadeau A, Bergeron J, Lemieux S. Contribution of abdominal visceral obesity and insulin resistance to the cardiovascular risk profile of postmenopausal women. Diabetes. 2005;54(3):770-7. doi: 10.2337/diabetes.54.3.770
» https://doi.org/10.2337/diabetes.54.3.770
- Seidlova-Wuttke D, Nguyen BT, Wuttke W. Long-term effects of ovariectomy on osteoporosis and obesity in estrogen-receptor-ß-deleted mice. Comp Med. 2012;62(1):8-13.
- Choi SB, Jang JS, Park S. Estrogen and exercise may enhance beta-cell function and mass via insulin receptor substrate 2 induction in ovariectomized diabetic rats. Endocrinology. 2005;146(11):4786-94. doi: 10.1210/en.2004-1653
» https://doi.org/10.1210/en.2004-1653
- Al-Wahaibi A, Farihah HS, Azian AL, Wan Nazaimoon WM. Effects of ovariectomy on body weight and activity of 11-beta hydroxysteroid dehydrogenase type I in the liver and adipose tissue of rats. Sci J King Faisal Univ. 2008;(9):149-61.
- Kim JH, Lee H, Kim JM, Kim HS, Shin SC, Hwang SK, et al. Effects of oligonol on the submandibular gland in ovariectomized rats. Biomed Pharmacother. 2021;141:111897. doi: 10.1016/j.biopha.2021.111897
» https://doi.org/10.1016/j.biopha.2021.111897
- Taleb-Belkadi O, Chaib H, Zemour L, Fatah A, Chafi B, Mekki K. Lipid profile, inflammation, and oxidative status in peri- and postmenopausal women. Gynecol Endocrinol. 2016;32(12):982-85. doi: 10.1080/09513590.2016.1214257
» https://doi.org/10.1080/09513590.2016.1214257
- Wang Z, Chandrasena ER, Yuan Y, Peng KW, van Breemen RB, Thatcher GR, et al. Redox cycling of catechol estrogens generating apurinic/apyrimidinic sites and 8-oxo-deoxyguanosine via reactive oxygen species differentiates equine and human estrogens. Chem Res Toxicol. 2010;23(8):1365-73. doi: 10.1021/tx1001282
» https://doi.org/10.1021/tx1001282
- Signorelli SS, Neri S, Sciacchitano S, Pino LD, Costa MP, Marchese G, et al. Behaviour of some indicators of oxidative stress in postmenopausal and fertile women. Maturitas. 2006;53(1):77-82. doi: 10.1016/j.maturitas.2005.03.001
» https://doi.org/10.1016/j.maturitas.2005.03.001
- Toan NK, Ahn SG. Aging-related metabolic dysfunction in the salivary gland: a review of the literature. Int J Mol Sci. 2021;22(11):5835. doi: 10.3390/ijms22115835
» https://doi.org/10.3390/ijms22115835
- Jeong JS, Jeong MJ. Morphological study on the correlation of prenatal and postnatal development between mouse parotid salivary gland and tooth. Appl Microsc. 2017;47(4):242-50. doi: 10.9729/AM.2017.47.4.242
» https://doi.org/10.9729/AM.2017.47.4.242
- Jeong SJ, Lim DS, Park JC, Kim HJ, Jeong JO, Choi BD, et al. Ultrastructure of the submandibular gland in the big white-toothed shrew, Crocidura lasiura Korean J Electron Microsc. 2005;35:(2):57-64.
- Laine M, Pienihäkkinen K. Salivary buffer effect in relation to late pregnancy and postpartum. Acta Odontol Scand. 2000;58(1):8-10. doi: 10.1080/000163500429361
» https://doi.org/10.1080/000163500429361
- Välimaa H, Savolainen S, Soukka T, Silvoniemi P, Mäkelä S, Kujari H, et al. Estrogen receptor-beta is the predominant estrogen receptor subtype in human oral epithelium and salivary glands. J Endocrinol. 2004;180(1):55-62. doi: 10.1677/joe.0.1800055
» https://doi.org/10.1677/joe.0.1800055
- Gottipamula S, Bhat S, Udaykumar K, Seetharam RN. Mesenchymal stromal cells: basics, classification, and clinical applications. J Stem Cells. 2018;13(1):23-47.
- Wang S, Qu X, Zhao RC. Clinical applications of mesenchymal stem cells. J Hematol Oncol. 2012;5:19. doi: 10.1186/1756-8722-5-19
» https://doi.org/10.1186/1756-8722-5-19
- D'souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, et al. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med. 2015;13:186. doi: 10.1186/s12916-015-0426-0
» https://doi.org/10.1186/s12916-015-0426-0
- Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6(6):1445-51. doi: 10.1002/sctm.17-0051
» https://doi.org/10.1002/sctm.17-0051
- Otsuru S, Desbourdes L, Guess AJ, Hofmann TJ, Relation T, Kaito T, et al. Extracellular vesicles released from mesenchymal stromal cells stimulate bone growth in osteogenesis imperfecta. Cytotherapy. 2018;20(1):62-73. doi: 10.1016/j.jcyt.2017.09.012
» https://doi.org/10.1016/j.jcyt.2017.09.012
- Chu DT, Phuong TN, Tien NL, Tran DK, Thanh VV, Quang TL, et al. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Sci. 2020;21(3):708. doi: 10.3390/ijms21030708
» https://doi.org/10.3390/ijms21030708
- Yildirir A. Postmenopozal hormon replasman (yerine koyma) tedavisi ve kardiyovasküler sistem [Postmenopausal hormone replacement therapy and the cardiovascular system]. Turk Kardiyol Dern Ars. 2010;38 Suppl 1:32-40. Turkish.
- Gairard B, Guldenfels C, Haehnel P, Mathelin C. Densité mammaire: un paramètre à surveiller lors de la prise d'un traitement hormonal de la ménopause [Breast density: a major parameter to follow during hormone replacement therapy]. Gynecol Obstet Fertil. 2009;37(7-8):657-60. French. doi: 10.1016/j.gyobfe.2009.04.023
» https://doi.org/10.1016/j.gyobfe.2009.04.023
- El Sharouny SH, Rizk AA, Abd-Elwahed MK, Mohammed YE. Histological changes in the parotid gland in ovariectomized rats and the possible protective role of estrogen and vitamin E: histomorphometric and ultrastructural study. Nat Sci. 2018;16(5):16-22.
- Schwarz S, Huss R, Schulz-Siegmund M, Vogel B, Brandau S, Lang S, et al. Bone marrow-derived mesenchymal stem cells migrate to healthy and damaged salivary glands following stem cell infusion. Int J Oral Sci. 2014;6(3):154-61. doi: 10.1038/ijos.2014.23
» https://doi.org/10.1038/ijos.2014.23
- Jeong MJ, Lee MH, Lim DS, Jeong M, Jeong SJ. Comparative morphological study on parotid and submandibular salivary glands in ovariectomized rats. J Dent Hyg Sci. 2022;22(2):83-9. doi: 10.17135/jdhs.2022.22.2.83
» https://doi.org/10.17135/jdhs.2022.22.2.83
- Da Y, Niu K, Wang K, Cui G, Wang W, Jin B, et al. A comparison of the effects of estrogen and Cimicifuga racemosa on the lacrimal gland and submandibular gland in ovariectomized rats. PLoS One. 2015;10(3):e0121470. doi: 10.1371/journal.pone.0121470
» https://doi.org/10.1371/journal.pone.0121470
- Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515-40. doi: 10.1016/0891-5849(90)90131-2
» https://doi.org/10.1016/0891-5849(90)90131-2
- Al-Bazii WJ. Estimation of some oxidative stress parameters in the serum and cerebellum of ovariectomized rats. J Kerbala Univ. 2014;(12):87-94.
- Latour MG, Shinoda M, Lavoie JM. Metabolic effects of physical training in ovariectomized and hyperestrogenic rats. J Appl Physiol (1985). 2001;90(1):235-41. doi: 10.1152/jappl.2001.90.1.235
» https://doi.org/10.1152/jappl.2001.90.1.235
- Peng Y, Jiang B, Wu H, Dai R, Tan L. Effects of genistein on neuronal apoptosis, and expression of Bcl-2 and Bax proteins in the hippocampus of ovariectomized rats. Neural Regen Res. 2012;7(36):2874-81. doi: 10.3969/j.issn.1673-5374.2012.36.004
» https://doi.org/10.3969/j.issn.1673-5374.2012.36.004
- Lotfy A, Salama M, Zahran F, Jones E, Badawy A, Sobh M. Characterization of mesenchymal stem cells derived from rat bone marrow and adipose tissue: a comparative study. Int J Stem Cells. 2014;7(2):135-42. doi: 10.15283/ijsc.2014.7.2.135
» https://doi.org/10.15283/ijsc.2014.7.2.135
- Polisetti N, Chaitanya VG, Babu PP, Vemuganti GK. Isolation, characterization and differentiation potential of rat bone marrow stromal cells. Neurol India. 2010;58(2):201-8. doi: 10.4103/0028-3886.63789
» https://doi.org/10.4103/0028-3886.63789
- He Q, Ye Z, Zhou Y, Tan WS. Comparative study of mesenchymal stem cells from rat bone marrow and adipose tissue. Turk J Biol. 2018;42:477-89. doi: 10.3906/biy-1802-52
» https://doi.org/10.3906/biy-1802-52
- Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7. doi: 10.1080/14653240600855905
» https://doi.org/10.1080/14653240600855905
- Neri S. Genetic stability of mesenchymal stromal cells for regenerative medicine applications: a fundamental biosafety aspect. Int J Mol Sci. 2019;20(10):2406. doi: 10.3390/ijms20102406
» https://doi.org/10.3390/ijms20102406
- Parlak SN, Tatar A, Keles ON, Selli J, Can I, Unal B. Effect of menopause and diabetes on the parotid glands: a histological and sterological study. Int J Med Sci Public Health. 2014;3(6):749-55. doi: 10.5455/ijmsph.2014.040420146
» https://doi.org/10.5455/ijmsph.2014.040420146
- Coleman H, Benghuzzi H, Tucci M, Cason Z. The effects of thyroid and reproductive hormones on the viability of human buccal epithelium. Biomed Sci Instrum. 2001;37:143-8.
- Mohamed DA, Elnegris HM, Wahdan RA. Histological effect of ovariectomy and estrogen replacement on parotid gland of adult albino rat. J Histol Histopathol. 2015;2:23. doi: 10.7243/2055-091X-2-23
» https://doi.org/10.7243/2055-091X-2-23
- Smith J, Lindsay M, Rahimian R, Anderson L. The influence of estrogen and progesterone on parasympathetic vasodilatation in the rat submandibular gland. Auton Neurosci. 2009;146(1-2):87-94. doi: 10.1016/j.autneu.2008.12.006
» https://doi.org/10.1016/j.autneu.2008.12.006
- Buyuk B, Parlak SN, Keles ON, Can I, Yetim Z, Toktay E, et al. Effects of diabetes on post-menopausal rat submandibular glands: a histopathological and stereological examination. Eurasian J Med. 2015;47(3):199-207. doi: 10.5152/eurasianjmed.2015.80
» https://doi.org/10.5152/eurasianjmed.2015.80
- Tirapelli LF, Tirapelli DP, Schimming BC. Ultrastructural alterations of the parotid glands of rats ( Rattus norvegicus ) submitted to experimental chronic alcoholism. Rev Chil Anat. 2001;19(2):175-82. doi: 10.4067/S0716-98682001000200009
» https://doi.org/10.4067/S0716-98682001000200009
- Kwon HK, Kim JM, Shin SC, Sung ES, Kim HS, Park GC, et al. The mechanism of submandibular gland dysfunction after menopause may be associated with the ferroptosis. Aging (Albany NY). 2020;12(21):21376-90. doi: 10.18632/aging.103882
» https://doi.org/10.18632/aging.103882
- Leimola-Virtanen R, Salo T, Toikkanen S, Pulkkinen J, Syrjänen S. Expression of estrogen receptor (ER) in oral mucosa and salivary glands. Maturitas. 2000;36(2):131-7. doi: 10.1016/s0378-5122(00)00138-9
» https://doi.org/10.1016/s0378-5122(00)00138-9
- PDelmas PD. Treatment of postmenopausal osteoporosis. Lancet. 2002;359(9322):2018-26. doi: 10.1016/S0140-6736(02)08827-X
» https://doi.org/10.1016/S0140-6736(02)08827-X
- Välimaa H, Savolainen S, Soukka T, Silvoniemi P, Mäkelä S, Kujari H, et al. Estrogen receptor-beta is the predominant estrogen receptor subtype in human oral epithelium and salivary glands. J Endocrinol. 2004;180(1):55-62. doi: 10.1677/joe.0.1800055
» https://doi.org/10.1677/joe.0.1800055
- Jones EA, English A, Kinsey SE, Straszynski L, Emery P, Ponchel F, et al. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin Cytom. 2006;70(6):391-9. doi: 10.1002/cyto.b.20118
» https://doi.org/10.1002/cyto.b.20118
- Denewar M, Amin LE. Role of bone marrow-derived mesenchymal stem cells on the parotid glands of streptozotocin induced diabetes rats. J Oral Biol Craniofac Res. 2020;10(2):33-37. doi: 10.1016/j.jobcr.2020.02.003
» https://doi.org/10.1016/j.jobcr.2020.02.003
- Fotino C, Ricordi C, Lauriola V, Alejandro R, Pileggi A. Bone marrow-derived stem cell transplantation for the treatment of insulin-dependent diabetes. Rev Diabet Stud. 2010;7(2):144-57. doi: 10.1900/RDS.2010.7.144
» https://doi.org/10.1900/RDS.2010.7.144
- Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci. 1997;22(8):299-306. doi: 10.1016/s0968-0004(97)01085-2
» https://doi.org/10.1016/s0968-0004(97)01085-2
- Moawad AA, Mohammed MA, Ibrahim FM, Zaher AR. Biological impact of Moringa oleifera extract on parotid gland of cisplatin- induced renal failure in albino ratS. Int J Adv Res. 2016;4(11):1620-7. doi: 10.21474/IJAR01/2253
» https://doi.org/10.21474/IJAR01/2253
- Monroe DG, Berger RR, Sanders MM. Tissue-protective effects of estrogen involve regulation of caspase gene expression. Mol Endocrinol. 2002;16(6):1322-31. doi: 10.1210/mend.16.6.0855
» https://doi.org/10.1210/mend.16.6.0855
- Kiray M, Ergur BU, Bagriyanik A, Pekcetin C, Aksu I, Buldan Z. Suppression of apoptosis and oxidative stress by deprenyl and estradiol in aged rat liver. Acta Histochem. 2007;109(6):480-5. doi: 10.1016/j.acthis.2007.04.008
» https://doi.org/10.1016/j.acthis.2007.04.008
- Monroe DG, Jin DF, Sanders MM. Estrogen opposes the apoptotic effects of bone morphogenetic protein 7 on tissue remodeling. Mol Cell Biol. 2000;20(13):4626-34. doi: 10.1128/MCB.20.13.4626-4634.2000
» https://doi.org/10.1128/MCB.20.13.4626-4634.2000
- Hu KX, Sun QY, Guo M, Ai HS. The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury. Br J Radiol. 2010;83(985):52-8. doi: 10.1259/bjr/61042310
» https://doi.org/10.1259/bjr/61042310
- Gashmardi N, Hosseini SE, Mehrabani D, Edalatmanesh MA, Khodabandeh Z. Impacts of bone marrow stem cells on caspase-3 levels after spinal cord injury in mice. Iran J Med Sci. 2017;42(6):593-8.
- Abd El-Haleem MR, Selim AO, Attia GM. Bone marrow-derived mesenchymal stem cells ameliorate parotid injury in ovariectomized rats. Cytotherapy. 2018;20(2):204-17. doi: 10.1016/j.jcyt.2017.10.003
» https://doi.org/10.1016/j.jcyt.2017.10.003
- Betteridge DJ. What is oxidative stress? Metabolism. 2000;49(2 Suppl 1):3-8. doi: 10.1016/s0026-0495(00)80077-3
» https://doi.org/10.1016/s0026-0495(00)80077-3
- Chowhan RK, Rahaman H, Singh LR. Structural basis of peroxidase catalytic cycle of human Prdx6. Sci Rep. 2020;10(1):17416. doi: 10.1038/s41598-020-74052-6
» https://doi.org/10.1038/s41598-020-74052-6
- Sharma N. Free radicals, antioxidants and disease. Biol Med. 2014;6(3):1000214. doi: 10.4172/0974-8369.1000214
» https://doi.org/10.4172/0974-8369.1000214
- Doshi SB, Agarwal A. The role of oxidative stress in menopause. J Midlife Health. 2013;4(3):140-6. doi: 10.4103/0976-7800.118990
» https://doi.org/10.4103/0976-7800.118990
- Sánchez-Rodríguez MA, Castrejón-Delgado L, Zacarías-Flores M, Arronte-Rosales A, Mendoza-Núñez VM. Quality of life among post-menopausal women due to oxidative stress boosted by dysthymia and anxiety. BMC Womens Health. 2017;17(1):1. doi: 10.1186/s12905-016-0358-7
» https://doi.org/10.1186/s12905-016-0358-7
- Wei PF, Ho KY, Ho YP, Wu YM, Yang YH, Tsai CC. The investigation of glutathione peroxidase, lactoferrin, myeloperoxidase and interleukin-1beta in gingival crevicular fluid: implications for oxidative stress in human periodontal diseases. J Periodontal Res. 2004;39(5):287-93. doi: 10.1111/j.1600-0765.2004.00744.x
» https://doi.org/10.1111/j.1600-0765.2004.00744.x
- Persky AM, Green PS, Stubley L, Howell CO, Zaulyanov L, Brazeau GA, et al. Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proc Soc Exp Biol Med. 2000;223(1):59-66. doi: 10.1046/j.1525-1373.2000.22308.x
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sally Hassan Abo Baker, Amira Ahmed R. Moawad

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.