PPARα modulation of macrophage polarization and inflammatory signaling in mimic periodontitis

Authors

DOI:

https://doi.org/10.1590/

Keywords:

Macrophage, Periodontitis, Porphyromonas gingivalis, Flow cytometry, Lypopolysaccharides

Abstract

Objective  This study investigates the role of peroxisome proliferator-activated receptor alpha (PPARα) in regulating macrophage polarization and inflammatory signaling under stimulation by periodontal pathogens. Methodology  THP-1-derived macrophages were stimulated with Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) in the presence or absence of PPARα agonists fenofibrate and WY14643, or the antagonist GW6471. Protein expression levels of TNF-α, IL-10, and phosphorylated NF-κB were assessed by Western blot. Immunofluorescence staining was used to evaluate IL-10, NF-κB, and CD36 expression. Flow cytometry quantified changes in macrophage polarization markers, including CD14+CD86+ (M1) and CD68+CD206+/CD163+ (M2) populations. THP-1 cells transfected with a secreted embryonic alkaline phosphatase (SEAP) reporter plasmid were treated with Pg-LPS (1 μg/mL) ± fenofibrate (50 μM) to assess NF-κB/AP-1 activity. PPARα reporter cells were treated with increasing concentrations of GW590735 or WY14643 and exposed to TNF-α, LPS, or GW6471+LPS to evaluate PPARα transcriptional activity. Results  PPARα activation by fenofibrate reduced TNF-α expression in Pg-LPS-stimulated macrophages and attenuated NF-κB signaling via both TLR2 and TLR4 pathways. Fenofibrate significantly increased IL-10 and CD36 expression, inhibited Pg-LPS-induced NF-κB nuclear translocation, and promoted a phenotypic shift from pro-inflammatory M1 to anti-inflammatory M2 macrophages. Moreover, inflammatory stimuli such as TNF-α and LPS suppressed PPARα activity, which could be restored by potent PPARα agonists. Conclusion  These findings suggest that PPARα activation modulates macrophage polarization and suppresses inflammatory signaling in response to periodontal bacterial antigens.

Downloads

Download data is not yet available.

References

- Kinane DF, Stathopoulou PG, Papapanou PN. Authors' reply: predictive diagnostic tests in periodontal diseases. Nat Rev Dis Primers. 2017;3:17070. doi:10.1038/nrdp.2017.70

- Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol. 2014;29(6):248-57. doi: 10.1111/omi.12065

» https://doi.org/10.1111/omi.12065

- Garlet GP. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J Dent Res. 2010;89(12):1349-63. doi: 10.1177/0022034510376402

» https://doi.org/10.1177/0022034510376402

- Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol. 2003;74(3):391-401. doi: 10.1902/jop.2003.74.3.39

» https://doi.org/10.1902/jop.2003.74.3.39

- Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13(11):460-9. doi: 10.1016/j.molmed.2007.09.002

» https://doi.org/10.1016/j.molmed.2007.09.002

- Brown PM, Kennedy DJ, Morton RE, Febbraio M. CD36/SR-B2-TLR2 dependent pathways enhance Porphyromonas gingivalis mediated atherosclerosis in the Ldlr KO mouse model. PLoS One. 2015;10(5):e0125126. doi: 10.1371/journal.pone.0125126

» https://doi.org/10.1371/journal.pone.0125126

- Liang DY, Liu F, Chen JX, He XL, Zhou YL, Ge BX, et al. Porphyromonas gingivalis infected macrophages upregulate CD36 expression via ERK/NF-?B pathway. Cell Signal. 2016;28(9):1292-303. doi: 10.1016/j.cellsig.2016.05.017

» https://doi.org/10.1016/j.cellsig.2016.05.017

- Park YM. CD36, a scavenger receptor implicated in atherosclerosis. Exp Mol Med. 2014;46(6):e99. doi: 10.1038/emm.2014.38

» https://doi.org/10.1038/emm.2014.38

- Ge W, He F, Kim KJ, Blanchi B, Coskun V, Nguyen L, et al. Coupling of cell migration with neurogenesis by proneural bHLH factors. Proc Natl Acad Sci U S A. 2006;103(5):1319-24. doi: 10.1073/pnas.0510419103

» https://doi.org/10.1073/pnas.0510419103

- Huang SC, Everts B, Ivanova Y, O'Sullivan D, Nascimento M, Smith AM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nature immunology. 2014;15(9):846-55. doi: 10.1038/ni.2956

» https://doi.org/10.1038/ni.2956

- Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Corrigendum: macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2020;11:234. doi: 10.3389/fimmu.2020.00234

» https://doi.org/10.3389/fimmu.2020.00234

- Pennathur S, Pasichnyk K, Bahrami NM, Zeng L, Febbraio M, Yamaguchi I, et al. The macrophage phagocytic receptor CD36 promotes fibrogenic pathways on removal of apoptotic cells during chronic kidney injury. Am J Pathol. 2015;185(8):2232-45. doi: 10.1016/j.ajpath.2015.04.016

» https://doi.org/10.1016/j.ajpath.2015.04.016

- Woo MS, Yang J, Beltran C, Cho S. Cell Surface CD36 protein in monocyte/macrophage contributes to phagocytosis during the resolution phase of ischemic stroke in mice. J Biol Chem. 2016;291(45):23654-61. doi: 10.1074/jbc.M116.750018

» https://doi.org/10.1074/jbc.M116.750018

- Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98(19):2088-93. doi: 10.1161/01.cir.98.19.2088

» https://doi.org/10.1161/01.cir.98.19.2088

- Kladna A, Aboul-Enein HY, Kruk I, Lichszteld K, Michalska T. Scavenging of reactive oxygen species by some nonsteroidal anti-inflammatory drugs and fenofibrate. Biopolymers. 2006;82(2):99-105. doi: 10.1002/bip.20402

» https://doi.org/10.1002/bip.20402

- Prasad GS, Govardhan P, Deepika G, Vakdevi V, Sashidhar RB. Anti-inflammatory activity of anti-hyperlipidemic drug, fenofibrate, and its phase-I metabolite fenofibric acid: in silico, in vitro, and in vivo studies. Inflammopharmacology. 2018;26(4):973-81. doi: 10.1007/s10787-017-0428-y

» https://doi.org/10.1007/s10787-017-0428-y

- Chen Y, Jiang Z, Keohane A, Hu Y. In vitro and in vivo study of the pathogenic role of PPARalpha in experimental periodontitis. J Appl Oral Sci. 2022;30:e20220076. doi: 10.1590/1678-7757-2022-0076

» https://doi.org/10.1590/1678-7757-2022-0076

- Chen Y, Hu Y. Therapeutic potential of PPARalpha agonist in ligature-induced experimental periodontitis. J Appl Oral Sci. 2022;30:e20210648. doi: 10.1590/1678-7757-2021-0648

» https://doi.org/10.1590/1678-7757-2021-0648

- Suzuki K, Suda G, Yamamoto Y, Furuya K, Baba M, Nakamura A, et al. Tenofovir-disoproxil-fumarate modulates lipid metabolism via hepatic CD36/PPAR-alpha activation in hepatitis B virus infection. J Gastroenterol. 2021;56(2):168-80. doi: 10.1007/s00535-020-01750-3

» https://doi.org/10.1007/s00535-020-01750-3

- Chen Y, Hu Y. Wnt signaling activation in gingival epithelial cells and macrophages of experimental periodontitis. Dent J (Basel). 2023 May 9;11(5):129. doi: 10.3390/dj11050129

» https://doi.org/10.3390/dj11050129

- Rios FJ, Ferracini M, Pecenin M, Koga MM, Wang Y, Ketelhuth DF, et al. Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts. PloS one. 2013;8(10):e76893. doi:10.1371/journal.pone.0076893

Downloads

Published

2025-10-20

Issue

Section

Original Articles

How to Cite

Hu, A., & Chen, Y. Y. (2025). PPARα modulation of macrophage polarization and inflammatory signaling in mimic periodontitis. Journal of Applied Oral Science, 33, e20250338. https://doi.org/10.1590/