Calcium carbonate in dentistry: a bibliometric review of emerging applications and trends

Authors

DOI:

https://doi.org/10.1590/

Keywords:

Calcium Carbonate, Dentistry, Biocompatible Materials, Dental Materials, Tooth Remineralization

Abstract

Calcium carbonate (CaCO₃) has garnered increasing attention in dental research due to its versatile bioactive properties and expanding applications in preventive, restorative, and regenerative therapies. Objective  This study aims to comprehensively assess the bibliometric features of articles evaluating the utilization of calcium carbonate (CaCO₃) in dentistry by conducting a bibliographic search on the Web of Science databases until March 2025. Methodology  The following data were collected: number and density of citations; authorship; year, journal of publication, and impact factor; study design and theme; keywords; institution and country of origin. VOSviewer software was used to generate collaborative network maps for authors and keywords. Results  A total of 91 highly cited articles were identified, with citation counts ranging from 123 to zero. Most articles (74%) were published after 2010, with the highest prevalence in Asia (44%), especially China (10%). The most frequent study design was in vitro (55%), primarily focused on restorative dentistry (29%) and cariology (23%). The most common keywords were “Calcium Carbonate” and “Hydroxyapatite”. DeVizio W. was the most prolific author, with four publications. Conclusions  Bibliometric analysis highlights a growing interest in the application of calcium carbonate in dentistry, with a progressive increase in scientific output over the years. The findings underscore the global distribution of research and emphasize the relevance of this biomaterial in various dental specialties. This study reinforces several key points for research groups worldwide engaged in the development of innovative dental materials, providing valuable direction for future investigations, which remain limited in scope, especially regarding clinical applications and long-term outcomes.

Downloads

Download data is not yet available.

References

- Saraswati W, Soetojo A, Dhaniar N, Praja HA, Santoso RM, Nosla NS, et al. CaCO3 from Anadara granosa shell as reparative dentin inducer in odontoblast pulp cells: i n-vivo study. J Oral Biol Craniofac Res. 2023;13(2):164-8. doi: 10.1016/j.jobcr.2023.01.003

» https://doi.org/10.1016/j.jobcr.2023.01.003

- Maleki S, Barzegar-Jalali M, Zarrintan MH, Adibkia K, Lotfipour F. Calcium carbonate nanoparticles; potential in bone and tooth disorders. Pharma Sci. 2015;20:175-82. doi: 10.5681/PS.2015.008

» https://doi.org/10.5681/PS.2015.008

- Shen P, Fernando JR, Yuan Y, Walker GD, Reynolds C, Reynolds EC. Bioavailable fluoride in calcium-containing dentifrices. Sci Rep. 2021;11(1):146. doi: 10.1038/s41598-020-80503-x

» https://doi.org/10.1038/s41598-020-80503-x

- Wang Y, Mei L, Gong L, Li J, He S, Ji Y, et al. Remineralization of early enamel caries lesions using different bioactive elements containing toothpastes: an in vitro study. Technol Health Care. 2016;24(5):701-11. doi: 10.3233/THC-161221

» https://doi.org/10.3233/THC-161221

- de Leeuw NH, Parker SC. Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach. J Phys Chem B. 1998;102(16):2914-22. doi: 10.1021/jp973210f

» https://doi.org/10.1021/jp973210f

- Al-Hashedi AA, Dubreuil N, Schwinghamer T, Dorzhiyeva S, Anweigi L, Emami E, et al. Aragonite toothpaste for management of dental calculus: a double-blinded randomized controlled clinical trial. Clin Exp Dent Res. 2022;8(4):863-74. doi: 10.1002/cre2.559

» https://doi.org/10.1002/cre2.559

- World Health Organization (WHO). Global oral health status report: towards universal health coverage for oral health by 2030 [internet]. Geneve: World Health Organization, 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/oral-health

» https://www.who.int/news-room/fact-sheets/detail/oral-health

- Nakashima S, Yoshie M, Sano H, Bahar A. Effect of a test dentifrice containing nano-sized calcium carbonate on remineralization of enamel lesions in vitro. J Oral Sci. 2009;51(1):69-77. doi: 10.2334/josnusd.51.69

» https://doi.org/10.2334/josnusd.51.69

- Goloshchapov D, Kashkarov V, Nikitkov K, Seredin P. Investigation of the effect of nanocrystalline calcium carbonate-substituted hydroxyapatite and l-lysine and l-arginine surface interactions on the molecular properties of dental biomimetic composites. Biomimetics. 2021;6(4):70. doi: 10.3390/biomimetics6040070

» https://doi.org/10.3390/biomimetics6040070

- Kraivaphan P, Amornchat C, Triratana T, Mateo LR, Ellwood R, Cummins D, et al. Two-year caries clinical study of the efficacy of novel dentifrices containing 1.5% arginine, an insoluble calcium compound and 1,450 ppm fluoride. Caries Res. 2013;47(6):582-90. doi: 10.1159/000353183

» https://doi.org/10.1159/000353183

- Elhadad A, Basiri T, Al-Hashedi A, Smith S, Moussa H, Veettil S, et al. Reactivity of aragonite with dicalcium phosphate facilitates removal of dental calculus. J Mater Sci: Mater Med. 2025;36(1):27. doi: 10.1007/s10856-025-06867-6

» https://doi.org/10.1007/s10856-025-06867-6

- Lynch RJ, ten Cate JM. The anti-caries efficacy of calcium carbonate-based fluoride toothpastes. Int Dent J. 2005;55(3):175-8. doi: 10.1111/j.1875-595x.2005.tb00055.x

» https://doi.org/10.1111/j.1875-595x.2005.tb00055.x

- Chen J, Zhang Y, Yin IX, Yu, OU, Chan AK, Chu H. Preventing dental caries with calcium-based materials: a concise review. Inorganics. 2024;12(9):253. doi: 10.3390/inorganics12090253.

» https://doi.org/10.3390/inorganics12090253

- Chen X, Bi JM, Zhang HY, Yuan MT, Wang JJ, Hu NR. NIR-responsive CaCO3@ BMP-2/PDA nanocomposite for multifunctional therapy in periodontitis. Colloids Surf A Physicochem Eng Asp. 2025;713:136520. doi: 10.1016/j.colsurfa.2025.136520

» https://doi.org/10.1016/j.colsurfa.2025.136520

- Zupic I, Cater T. Bibliometric methods in management and organization. Organ Res Methods. 2015;18(3):429-72. doi: 10.1177/1094428114562629

» https://doi.org/10.1177/1094428114562629

- Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. 2021;133:285-96. doi: 10.1016/j.jbusres.2021.04.070

» https://doi.org/10.1016/j.jbusres.2021.04.070

- Dos Anjos LM, Rocha AO, Magrin GL, Kammer PV, Benfatti CA, Matias de Souza JC, et al. Bibliometric analysis of the 100 most cited articles on bone grafting in dentistry. Clin Oral Implants Res. 2023;34(11):1198-216. doi: 10.1111/clr.14152

» https://doi.org/10.1111/clr.14152

- Murakami FS, Rodrigues PO, Campos CM, Silva MA. Physicochemical study of CaCO 3 from egg shells. Cienc Tecnol Aliment. 2007;27(3):658-662. doi: 10.1590/S0101-20612007000300035

» https://doi.org/10.1590/S0101-20612007000300035

- Figueiredo M, Henriques J, Martins G, Guerra F, Judas F, Figueiredo H. Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes-comparison with human bone. J Biomed Mater Res B Appl Biomater. 2010;92B(2):409-19. doi: 10.1002/jbm.b.31529

» https://doi.org/10.1002/jbm.b.31529

- Gore JT. The role of calcium carbonate in dental caries. J Am Dent Assoc. 1953;47(2):180-9. doi: 10.14219/jada.archive.1953.0143

» https://doi.org/10.14219/jada.archive.1953.0143

- Rocha AO, Anjos LM, Vitali FC, Santos PS, Bolan M, Santana CM, et al. Tooth bleaching: a bibliometric analysis of the top 100 most-cited papers. Braz Dent J. 2023;34(2):41-55. doi: 10.1590/0103-6440202305290

» https://doi.org/10.1590/0103-6440202305290

- Lima TO, Rocha AO, Anjos LM, Meneses NS Jr, Hungaro Duarte MA, Alcalde MP, et al. A global overview of guided endodontics: a bibliometric analysis. J Endod. 2023;49(12):1607-16. doi: 10.1016/j.joen.2023.10.002

» https://doi.org/10.1016/j.joen.2023.10.002

- Clementino LC, Souza KS, Castelo-Branco M, Perazzo MF, Ramos-Jorge ML, Mattos FF, et al. Top 100 most-cited oral health-related quality of life papers: bibliometric analysis. Community Dent Oral Epidemiol. 2022;50(3):199-205. doi: 10.1111/cdoe.12652

» https://doi.org/10.1111/cdoe.12652

- Torres-Mansilla A, Álvarez-Lloret P, Fernández-Penas R, D'Urso A, Baldión PA, Oltolina F, et al. Hydrothermal transformation of eggshell calcium carbonate into apatite micro-nanoparticles: cytocompatibility and osteoinductive properties. Nanomaterials (Basel). 2023;13(16):2299. doi: 10.3390/nano13162299

» https://doi.org/10.3390/nano13162299

- Tangboriboon N, Changkhamchom S, Sirivat A. Effect of embedding eggshells to form calcium feldspar as flux in porcelain via slip casting process for bio-dental and medical applications. Mater Technol. 2019;35(8):452-62. doi: 10.1080/10667857.2019.1699262

» https://doi.org/10.1080/10667857.2019.1699262

- Dahake PT, Panchal VV, Kale YJ, Dadpe MV, Kendre SB, Kumbar VJ, et al. Effect of naturally occurring biogenic materials on human dental pulp stem cells (hDPSC): an in vitro study. Regen Eng Transl Med. 2021;7:506-15. doi: 10.1007/s40883-020-00170-2

» https://doi.org/10.1007/s40883-020-00170-2

- Wannakajeepiboon M, Sathorn C, Kornsuthisopon C, Santiwong B, Wasanapiarnpong T, Linsuwanont P. Evaluation of the chemical, physical, and biological properties of a newly developed bioceramic cement derived from cockle shells: an in vitro study. BMC Oral Health. 2023;23(1):354. doi: 10.1186/s12903-023-03073-0

» https://doi.org/10.1186/s12903-023-03073-0

Downloads

Published

2025-10-30

Issue

Section

Review

How to Cite

Barboza, A. da S., Oliveira, S. S. de, Dugaich, A. P. C., Badaró, M. M., Martins, A. P. V. B., Lund, R. G., Stolf, S. C., & Andrade, J. S. R. de. (2025). Calcium carbonate in dentistry: a bibliometric review of emerging applications and trends. Journal of Applied Oral Science, 33, e20250287. https://doi.org/10.1590/