Single local injection of 3S-HMGB1 enhances early bone healing and titanium implant osseointegration in type 2 diabetic mice

Authors

DOI:

https://doi.org/10.1590/

Keywords:

Diabetes Mellitus, Oral Osseointegration, 3S-HMGB1, CXCR4

Abstract

Diabetes significantly impairs bone healing via several mechanisms, including sustained inflammation, oxidative stress, and poor osteogenic responses. Fully reduced isoform of High Mobility Group Box 1 with three serine substitutions (3S-HMGB1) has shown regenerative properties while being resistant to oxidative degradation. Objective:  This study evaluated the therapeutic potential of a single local injection of 3S-HMGB1 in early osseointegration under diabetic conditions in mice. Methodology:  A total of 48 male 129/Sv mice (24 non-diabetic [ND], 24 diabetic [D]) received titanium implants following maxillary first molar extraction. ND and D mice (n:12) were injected with either saline (control) or 3S-HMGB1 (0.75 mg/kg) into the fresh extraction socket. Osseointegration was evaluated at 7 and 21 days post-implantation using microCT, histology (bone-to-implant contact [BIC] and birefringence), and immunohistochemistry for Runx2 and CXCR4. Results:  ND controls exhibited early osteogenic activity, with a predominance of Runx2-positive cells at 7 days and successful osseointegration by 21 days. In contrast, D controls showed reduced numbers of Runx2-positive cells and markedly lower BV/TV, indicating compromised bone healing at 21 days. Treatment with 3S-HMGB1 resulted in significantly increased bone volume at the implant site in D animals (55.6±7.20% vs. 44.6±6.23%) and restored BIC from 44.9±9.32% (D controls) to 61.78±11.31% (D 3S-HMGB1), near ND levels (65.16±7.64%). Both ND and D groups treated with 3S-HMGB1 presented enhanced collagen organization. No significant differences were found in CXCR4 between groups; however, in D animals, a distinct peri-implant staining pattern suggested impaired recruitment despite preserved stem cell niches in the bone marrow. Conclusions:  Collectively, our findings indicate that a single injection of redox-stable 3S-HMGB1 may represent a promising regenerative strategy to mitigate early implant failure in diabetes. Future studies should explore sustained delivery approaches to enhance long-term outcomes.

Downloads

Download data is not yet available.

References

Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its impact on the immune system. Curr Diabetes Rev. 2020;16(5):442-9. doi: 10.2174/1573399815666191024085838

» https://doi.org/10.2174/1573399815666191024085838

Wagner J, Spille JH, Wiltfang J, Naujokat H. Systematic review on diabetes mellitus and dental implants: an update. Int J Implant Dent. 2022 Jan 3;8(1):1. doi: 10.1186/s40729-021-00399-8

» https://doi.org/10.1186/s40729-021-00399-8

Javed F, Romanos GE. Impact of diabetes mellitus and glycemic control on the osseointegration of dental implants: a systematic literature review. J Periodontol. 2009;80(11):1719-30. doi: 10.1902/jop.2009.090283

» https://doi.org/10.1902/jop.2009.090283

Nevins ML, Karimbux NY, Weber HP, Giannobile WV, Fiorellini JP. Wound healing around endosseous implants in experimental diabetes. Int J Oral Maxillofac Implants. 1998;3(5):620-9. 10.1016/S1079-2104(99)70236-2

» https://doi.org/10.1016/S1079-2104(99)70236-2

Biguetti CC, Arteaga A, Chandrashekar BL, Rios E, Margolis R, Rodrigues DC. A Model of immediate implant placement to evaluate early osseointegration in 129/Sv diabetic mice. Int J Oral Maxillofac Implants. 2023;38(6):1200-10. doi: 10.11607/jomi.10335

» https://doi.org/10.11607/jomi.10335

Chen Y, Zhou Y, Lin J, Zhang S. Challenges to improve bone healing under diabetic conditions. Front Endocrinol (Lausanne). 2022;13:861878. doi: 10.3389/fendo.2022.861878

» https://doi.org/10.3389/fendo.2022.861878

Zhao YF, Zeng DL, Xia LG, Zhang SM, Xu LY, Jiang XQ, et al. Osteogenic potential of bone marrow stromal cells derived from streptozotocin-induced diabetic rats. Int J Mol Med. 2013;31(3):614-20. doi: 10.3892/ijmm.2013.1227

» https://doi.org/10.3892/ijmm.2013.1227

Tevlin R, Seo EY, Marecic O, McArdle A, Tong X, Zimdahl B, Malkovskiy A, et al. Pharmacological rescue of diabetic skeletal stem cell niches. Sci Transl Med. 2017;9(372):eaag2809. doi: 10.1126/scitranslmed.aag280

» https://doi.org/10.1126/scitranslmed.aag280

Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012;2012:918267. doi: 10.1155/2012/918267

» https://doi.org/10.1155/2012/918267

Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest. 2007;117(5):1249-59. doi: 10.1172/JCI29710

» https://doi.org/10.1172/JCI29710

Terenzi DC, Al-Omran M, Quan A, Teoh H, Verma S, Hess DA. Circulating pro-vascular progenitor cell depletion during type 2 diabetes: translational insights into the prevention of ischemic complications in diabetes. JACC Basic Transl Sci. 2018;4(1):98-112. doi: 10.1016/j.jacbts.2018.10.005

» https://doi.org/10.1016/j.jacbts.2018.10.005

Doherty L, Wan M, Kalajzic I, Sanjay A. Diabetes impairs periosteal progenitor regenerative potential. Bone. 2020;143:115764. doi: 10.1016/j.bone.2020.115764

» https://doi.org/10.1016/j.bone.2020.115764

Lee G, Espirito Santo AI, Zwingenberger S, Cai L, Vogl T, Feldmann M, et al. Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to GAlert. Proc Natl Acad Sci U S A. 2018;115(19):E4463-72. doi: 10.1073/pnas.1802893115

» https://doi.org/10.1073/pnas.1802893115

Haque N, Fareez IM, Fong LF, Mandal C, Abu Kasim NH, Kacharaju KR, et al. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs. World J Stem Cells. 2020;12(9):938-51. doi: 10.4252/wjsc.v12.i9.938

» https://doi.org/10.4252/wjsc.v12.i9.938

Pozzobon T, Goldoni G, Viola A, Molon B. CXCR4 signaling in health and disease. Immunol Lett. 2016;177:6-15. doi: 10.1016/j.imlet.2016.06.006

» https://doi.org/10.1016/j.imlet.2016.06.006

Biguetti CC, Cavalla F, Silveira EV, Tabanez AP, Francisconi CF, Taga R, et al. HGMB1 and RAGE as essential components of Ti osseointegration process in mice. Front Immunol. 2019;10:709. doi: 10.3389/fimmu.2019.00709

» https://doi.org/10.3389/fimmu.2019.00709

Lee G, Espirito Santo AI, Zwingenberger S, Cai L, Vogl T, Feldmann M, et al. Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to GAlert. Proc Natl Acad Sci U S A. 2018;115(19):E4463-72. doi: 10.1073/pnas.1802893115

» https://doi.org/10.1073/pnas.1802893115

Tang D, Kang R, Zeh HJ, Lotze MT. The multifunctional protein HMGB1: 50 years of discovery. Nat Rev Immunol. 2023;23(12):824-41. doi: 10.1038/s41577-023-00894-6

» https://doi.org/10.1038/s41577-023-00894-6

SSapojnikova N, Maman J, Myers FA, Thorne AW, Vorobyev VI, Crane-Robinson C. Biochemical observation of the rapid mobility of nuclear HMGB1. Biochim Biophys Acta. 2005;1729(1):57-63. doi: 10.1016/j.bbaexp.2005.03.002

» https://doi.org/10.1016/j.bbaexp.2005.03.002

Tang D, Billiar TR, Lotze MT. A Janus tale of two active high mobility group box 1 (HMGB1) redox states. Mol Med. 2012;18(1):1360-2. doi: 10.2119/molmed.2012.00314

» https://doi.org/10.2119/molmed.2012.00314

Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. HMGB1 in health and disease. Mol Aspects Med. 2014;40:1-116. doi: 10.1016/j.mam.2014.05.001

» https://doi.org/10.1016/j.mam.2014.05.001

Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, De Marchis F, et al Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med. 2012;209(9):1519-28. doi: 10.1084/jem.20120189

» https://doi.org/10.1084/jem.20120189

Arteaga A, Biguetti CC, Chandrashekar B, La Fontaine J, Rodrigues DC. Revolutionizing fracture fixation in diabetic and non-diabetic rats: High mobility group box 1-based coating for enhanced osseointegration. Bone. 2023;177:116917. doi: 10.1016/j.bone.2023.116917

» https://doi.org/10.1016/j.bone.2023.116917

Biscetti F, Straface G, De Cristofaro R, Lancellotti S, Rizzo P, Arena V, et al. High-mobility group box-1 protein promotes angiogenesis after peripheral ischemia in diabetic mice through a VEGF-dependent mechanism. Diabetes. 2010;59(6):1496-505. doi: 10.2337/db09-1507

» https://doi.org/10.2337/db09-1507

Ferrara M, Chialli G, Ferreira LM, Ruggieri E, Careccia G, Preti A, et al. Oxidation of HMGB1 is a dynamically regulated process in physiological and pathological conditions. Front Immunol. 2020;11:1122. doi: 10.3389/fimmu.2020.01122

» https://doi.org/10.3389/fimmu.2020.01122

Vénéreau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front Immunol. 2015;6:422. doi: 10.3389/fimmu.2015.00422

» https://doi.org/10.3389/fimmu.2015.00422

Schiraldi M, Raucci A, Muñoz LM, Livoti E, Celona B, Venereau E, et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med. 2012;209(3):551-63. doi: 10.1084/jem.20111739

» https://doi.org/10.1084/jem.20111739

Di Maggio S, Milano G, De Marchis F, D’Ambrosio A, Bertolotti M, Palacios BS, et al. Non-oxidizable HMGB1 induces cardiac fibroblasts migration via CXCR4 in a CXCL12-independent manner and worsens tissue remodeling after myocardial infarction. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2693-704. doi: 10.1016/j.bbadis.2017.07.012

» https://doi.org/10.1016/j.bbadis.2017.07.012

Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG; NC3Rs Reporting Guidelines Working Group. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160(7):1577-9. doi: 10.1111/j.1476-5381.2010.00872.x

» https://doi.org/10.1111/j.1476-5381.2010.00872.x

Nørgaard SA, Søndergaard H, Sørensen DB, Galsgaard ED, Hess C, Sand FW. Optimising streptozotocin dosing to minimise renal toxicity and impairment of stomach emptying in male 129/Sv mice. Lab Anim. 2020 Aug 1;54(4):341–52.

Biguetti CC, Cavalla F, Silveira EM, Fonseca AC, Vieira AE, Tabanez AP, et al. Oral implant osseointegration model in C57Bl/6 mice: microtomographic, histological, histomorphometric and molecular characterization. J Appl Oral Sci. 2018;26:e20170601. doi: 10.1590/1678-7757-2017-0601

» https://doi.org/10.1590/1678-7757-2017-0601

Chrcanovic BR, Albrektsson T, Wennerberg A. Diabetes and oral implant failure: a systematic review. J Dent Res. 2014;93(9):859-67. doi: 10.1177/0022034514538820

» https://doi.org/10.1177/0022034514538820

Hasegawa H, Ozawa S, Hashimoto K, Takeichi T, Ogawa T. Type 2 diabetes impairs implant osseointegration capacity in rats. Int J Oral Maxillofac Implants. 2008;23(2):237-46.

King S, Klineberg I, Levinger I, Brennan-Speranza TC. The effect of hyperglycaemia on osseointegration: a review of animal models of diabetes mellitus and titanium implant placement. Arch Osteoporos. 2016;11(1):29. doi: 10.1007/s11657-016-0284-1

» https://doi.org/10.1007/s11657-016-0284-1

Wheelis SE, Biguetti CC, Natarajan S, Arteaga A, El Allami J, Lakkasettar Chandrashekar B, et al. Cellular and molecular dynamics during early oral osseointegration: a comprehensive characterization in the Lewis rat. ACS Biomater Sci Eng. 2021;7(6):2392-407. doi: 10.1021/acsbiomaterials.0c01420

» https://doi.org/10.1021/acsbiomaterials.0c01420

Mouraret S, Hunter DJ, Bardet C, Brunski JB, Bouchard P, Helms JA. A pre-clinical murine model of oral implant osseointegration. Bone. 2014;58:177-84. doi: 10.1016/j.bone.2013.07.021

» https://doi.org/10.1016/j.bone.2013.07.021

Wajima CS, Pitol-Palin L, Batista FR, Santos PH, Matsushita DH, Okamoto R. Morphological and biomechanical characterization of long bones and peri-implant bone repair in type 2 diabetic rats treated with resveratrol. Sci Rep. 2024;14(1):2860. doi: 10.1038/s41598-024-53260-4

» https://doi.org/10.1038/s41598-024-53260-4

Pitol-Palin L, Batista FR, Gomes-Ferreira PH, Mulinari-Santos G, Ervolino E, Souza FA, et al. Different stages of alveolar bone repair process are compromised in the type 2 diabetes condition: an experimental study in rats. Biology (Basel). 2020;9(12):471. doi: 10.3390/biology9120471

» https://doi.org/10.3390/biology9120471

Phimphilai M, Zhao Z, Boules H, Roca H, Franceschi RT. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res. 2006;21(4):637-46. doi: 10.1359/jbmr.060109

» https://doi.org/10.1359/jbmr.060109

Fowlkes JL, Bunn RC, Liu L, Wahl EC, Coleman HN, Cockrell GE, et al. Runt-related transcription factor 2 (RUNX2) and RUNX2-related osteogenic genes are down-regulated throughout osteogenesis in type 1 diabetes mellitus. Endocrinology. 2008;149(4):1697-704. doi: 10.1210/en.2007-1408

» https://doi.org/10.1210/en.2007-1408

Downloads

Published

2025-10-20

Issue

Section

Original Articles

How to Cite

Chandrashekar, B. L., Arteaga, A., Rios, E., Mora, J., Garlet, G. P., Rodrigues, D. C., & Biguetti, C. C. (2025). Single local injection of 3S-HMGB1 enhances early bone healing and titanium implant osseointegration in type 2 diabetic mice. Journal of Applied Oral Science, 33, e20250358. https://doi.org/10.1590/