Effect of wavelength and radiant emittance on light transmittance and temperature increase in dental resin-based composites
DOI:
https://doi.org/10.1590/Keywords:
Curing lights, Light curing unit, Light curing, Polymerization, TemperatureAbstract
Objectives: To evaluate the effect of wavelength and radiant emittance on light transmittance and heat generation through dental resin-based composites. Methodology: Light-emitting diodes on the blue, green, and red wavelength spectra were assembled and characterized using a spectrometer (MARC Resin Calibrator, BlueLight Analytics). Voltage (V) and amperage (A) from each LED was set up to emit a 500-, 1000-, 2000-, 3000-, or 4000-mW/cm2 radiant emittance. A self-cured resin-based composite model was fabricated in two pastes, one with benzoyl peroxide and another with ethyl 4-dimethylaminobenzoate. The two pastes were mixed and placed into a mold (ø=10 mm, 2 mm thick) until completely hardened. A power analysis was conducted to determine the sample size to provide a power of at least 0.8 and α=0.05. Light transmittance through the 2-mm thick composite-based sample was evaluated using a spectrometer (n=10). Heat generation (oC) in the resin-based composite sample induced by the exposure to the tested wavelength spectra and radiant emittances were recorded using an infrared camera (FLIR ONE PRO, FLIR Systems) (n=10). Statistical analyses were performed using analysis of variance and the Tukey's test for multiple comparisons. Results: Light transmission systematically increased based on radiant and wavelength emittances (p<0.0001). Heat generation was directly proportional to radiant emittance but indirectly proportional to wavelength emittance (p<.0.0001). Conclusions: Despite its limitations, this study found that increasing wavelength emittance seems to configure a great alternative to increase light transmittance through resin-based composite restorations while reducing heat generation.
Downloads
References
Price RB, Ferracane JL, Shortall AC. Light-curing units: a review of what we need to know. J Dent Res. 2015;94(9):1179-86. doi: 10.1177/0022034515594786
» https://doi.org/10.1177/0022034515594786
Szalewski L, Wojcik D, Sofinska-Chmiel W, Kusmierz M, Rozylo-Kalinowska I. How the duration and mode of photopolymerization affect the mechanical properties of a dental composite resin. Materials (Basel). 2022;16(1):113. doi: 10.3390/ma16010113
» https://doi.org/10.3390/ma16010113
Santos GO, Silva AH, Guimaraes JG, Barcellos AA, Sampaio EM, Silva EM. Analysis of gap formation at tooth-composite resin interface: effect of C-factor and light-curing protocol. J Appl Oral Sci. 2007;15(4):270-4. doi: 10.1590/s1678-77572007000400006
» https://doi.org/10.1590/s1678-77572007000400006
Rathke A, Pfefferkorn F, McGuire MK, Heard RH, Astrom M, Seemann R. Three-year practice-based clinical trial on the performance of a self-adhesive resin-based bulk-fill restorative. J Esthet Restor Dent. 2025;37(7):1891-9. doi: 10.1111/jerd.13468
» https://doi.org/10.1111/jerd.13468
Haenel T, Hausnerova B, Steinhaus J, Price RB, Sullivan B, Moeginger B. Effect of the irradiance distribution from light curing units on the local micro-hardness of the surface of dental resins. Dent Mater. 2015;31(2):93-104. doi: 10.1016/j.dental.2014.11.003
» https://doi.org/10.1016/j.dental.2014.11.003
Par M, Repusic I, Skenderovic H, Sever EK, Marovic D, Tarle Z. Real-time light transmittance monitoring for determining polymerization completeness of conventional and bulk fill dental composites. Oper Dent. 2018;43(1):E19-e31. doi:10.2341/17-041-l
» https://doi.org/10.2341/17-041-l
Rocha MG, Roulet JF, Sinhoreti MA, Correr AB, Oliveira D. Light transmittance and depth of cure of a bulk fill composite based on the exposure reciprocity law. Braz Dent J. 2021;32(1):78-84. doi: 10.1590/0103-6440202103842
» https://doi.org/10.1590/0103-6440202103842
Al-Zain AO, Eckert GJ, Platt JA. The influence of distance on radiant exposure and degree of conversion using different light-emitting-diode curing units. Oper Dent. 2019;44(3):E133-E144. doi: 10.2341/18-004-L
» https://doi.org/10.2341/18-004-L
Grazioli G, Cuevas-Suarez CE, Mederos M, DE Leon E, Garcia A, Zamarripa-Calderón E, et al. Evaluation of irradiance and radiant exposure on the polymerization and mechanical properties of a resin composite. Braz Oral Res. 202210;36:e082. doi: 10.1590/1807-3107bor-2022.vol36.0082
» https://doi.org/10.1590/1807-3107bor-2022.vol36.0082
Maktabi H, Balhaddad AA, Alkhubaizi Q, Strassler H, Melo MA. Factors influencing success of radiant exposure in light-curing posterior dental composite in the clinical setting. Am J Dent. 2018;31(6):320-3.
Arikawa H, Kanie T, Fujii K, Ban S, Takahashi H. Light-attenuating effect of dentin on the polymerization of light-activated restorative resins. Dent Mater J. 2004;23(4):467-73. doi: 10.4012/dmj.23.467
» https://doi.org/10.4012/dmj.23.467
Okuse T, Nakamura K, Komatsu S, Miyashita-Kobayashi A, Haruyama A, Yamamoto A, et al. Depth of cure of resin-based composites irradiated with three types of light-curing units at different output intensities. Cureus. 2024;16(10):e71825. doi: 10.7759/cureus.71825
» https://doi.org/10.7759/cureus.71825
Rueggeberg FA, Giannini M, Arrais CA, Price RB. Light curing in dentistry and clinical implications: a literature review. Braz Oral Res. 2017;31(suppl 1):e61. doi: 10.1590/1807-3107BOR-2017.vol31.0061
» https://doi.org/10.1590/1807-3107BOR-2017.vol31.0061
Vinagre A, Ramos JC, Rebelo C, Basto JF, Messias A, Alberto N, et al. Pulp temperature rise induced by light-emitting diode light-curing units using an ex vivo model. Materials (Basel). 2019;12(3):411. doi: 10.3390/ma12030411
» https://doi.org/10.3390/ma12030411
Ragain JC Jr, Brodine BA, Zheng Q, Blen BJ, Garcia-Godoy F, Zhang YH. Effects of curing lights on human gingival epithelial cell proliferation. J Am Dent Assoc. 2021;152(4):260-8. doi: 10.1016/j.adaj.2020.12.006
» https://doi.org/10.1016/j.adaj.2020.12.006
Harlow JE, Sullivan B, Shortall AC, Labrie D, Price RB. Characterizing the output settings of dental curing lights. J Dent. 2016;44:20-6. doi: 10.1016/j.jdent.2015.10.019
» https://doi.org/10.1016/j.jdent.2015.10.019
Kowalska A, Sokolowski J, Bociong K. The photoinitiators used in resin based dental composite-a review and future perspectives. Polymers (Basel). 2021;13(3):470. doi: 10.3390/polym13030470
» https://doi.org/10.3390/polym13030470
Marović D, Daničić P, Bojo G, Par M, Tarle Z. Monowave vs polywave light - curing units: effect on light transmission of composite without alternative photoinitiators. Acta Stomatol Croat. 2024;58(1):30-8. doi: 10.15644/asc58/1/3
» https://doi.org/10.15644/asc58/1/3
Oliveira D, Rocha MG, Correr AB, Ferracane JL, Sinhoreti M. Effect of beam profiles from different light emission tip types of multiwave light-emitting diodes on the curing profile of resin-based composites. Oper Dent. 2019;44(4):365-78. doi: 10.2341/16-242
» https://doi.org/10.2341/16-242
Hofmann N, Hugo B, Klaiber B. Effect of irradiation type (LED or QTH) on photo-activated composite shrinkage strain kinetics, temperature rise, and hardness. Eur J Oral Sci. 2002;110(6):471-9. doi: 10.1034/j.1600-0722.2002.21359.x
» https://doi.org/10.1034/j.1600-0722.2002.21359.x
Neumann MG, Schmitt CC, Ferreira GC, Correa IC. The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dent Mater. 2006;22(6):576-84. doi: 10.1016/j.dental.2005.06.006
» https://doi.org/10.1016/j.dental.2005.06.006
Harlow JE, Rueggeberg FA, Labrie D, Sullivan B, Price RB. Transmission of violet and blue light through conventional (layered) and bulk cured resin-based composites. J Dent. 2016;53:44-50. doi: 10.1016/j.jdent.2016.06.007
» https://doi.org/10.1016/j.jdent.2016.06.007
Lima RB, Troconis CC, Moreno MB, Murillo-Gómez F, De Goes MF. Depth of cure of bulk fill resin composites: a systematic review. J Esthet Restor Dent. 2018;30(6):492-501. doi: 10.1111/jerd.12394
» https://doi.org/10.1111/jerd.12394
Rocha MG, Oliveira D, Felix C, Roulet JF, Sinhoreti MA, Correr AB. Beam profiling of dental light curing units using different camera-based systems. Eur J Dent. 2022;16(1):64-79. doi: 10.1055/s-0041-1731628
» https://doi.org/10.1055/s-0041-1731628
Lempel E, Szebeni D, Őri Z, Kiss T, Szalma J, Lovász BV, et al. The effect of high-irradiance rapid polymerization on degree of conversion, monomer elution, polymerization shrinkage and porosity of bulk-fill resin composites. Dent Mater. 2023;39(4):442-53. doi: 10.1016/j.dental.2023.03.016
» https://doi.org/10.1016/j.dental.2023.03.016
Szalewski L, Szalewski M, Jarosz P, Woś M, Szymańska J. Temperature changes in composite materials during photopolymerization. Appl Sci. 2021;(11):474. doi: 10.3390/app11020474
» https://doi.org/10.3390/app11020474
Almeida LF, Basso FG, Turrioni AP, de-Souza-Costa CA, Hebling J. "Metabolism of Odontoblast-like cells submitted to transdentinal irradiation with blue and red LED". Arch Oral Biol. 2017;83:258-64. doi: 10.1016/j.archoralbio.2017.08.004
» https://doi.org/10.1016/j.archoralbio.2017.08.004
Turrioni AP, Basso FG, Alonso JR, Oliveira CF, Hebling J, Bagnato VS, et al. Transdentinal cell photobiomodulation using different wavelengths. Oper Dent. 2015;40(1):102-11. doi: 10.2341/13-370-L
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sharanya Singh, Mateus Garcia Rocha, Shannon M Roulet, Jean-François Roulet, Mario Alexandre Coelho Sinhoreti, Dayane Oliveira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.