Vagus nerve stimulation alleviates alveolar bone loss and inflammation in ligature-induced periodontitis rat model
DOI:
https://doi.org/10.1590/Keywords:
Vagus nerve stimulation, Periodontitis, Alveolar bone loss, Inflammation, α7-nAChRAbstract
Objective Vagus nerve stimulation (VNS) can inhibit inflammation in various diseases by activating the cholinergic anti-inflammatory pathway. However, whether VNS could attenuate periodontitis by activating α7-nicotinic acetylcholine receptor (α7-nAChR) remains unknown. Methodology Ligature induction was utilized to establish the periodontitis rat model. Periodontal indices like bleeding, tooth mobility, and probing depth, were measured. Bone mineral density, trabecular thickness, and length of the cement-enamel junction to the alveolar bone crest were analyzed using micro-CT. Immunohistochemistry assessed bone morphology and inflammatory levels. Inflammatory cytokines were detected using enzyme-linked immunosorbent assay and quantitative reverse transcription polymerase chain reaction. For the in vitro inflammation model, RAW264.7 cells were stimulated with lipopolysaccharides and acetylcholine to study inflammatory responses. Results VNS significantly improved periodontal health and reduced alveolar bone loss in periodontitis rats. VNS alleviated inflammation by suppressing pro-inflammatory cytokines, including IL-1β, IL-6, and IL-18, enhanced bone formation, and activated the cholinergic anti-inflammatory pathway, as evidenced by increased α7-nAChR expression. Additionally, acetylcholine activation of α7-nAChR in RAW264.7 cells inhibited pro-inflammatory responses and promoted anti-inflammatory responses. Conclusion These findings suggest that VNS can effectively reduce inflammation and improve periodontal outcomes in periodontitis.
Downloads
References
- Könönen E, Gursoy M, Gursoy UK. Periodontitis: a multifaceted disease of tooth-supporting tissues. J Clin Med. 2019;8(8):1135. doi: 10.3390/jcm8081135
» https://doi.org/10.3390/jcm8081135
- Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038. doi: 10.1038/nrdp.2017.38
» https://doi.org/10.1038/nrdp.2017.38
- Bui FQ, Almeida-da-Silva CL, Huynh B, Trinh A, Liu J, Woodward J, et al. Association between periodontal pathogens and systemic disease. Biomed J. 2019;42:27-35. doi:10.1016/j.bj.2018.12.001
» https://doi.org/10.1016/j.bj.2018.12.001
- Lopez R, Smith PC, Gostemeyer G, Schwendicke F. Ageing, dental caries and periodontal diseases. J Clin Periodontol. 2017;44 Suppl 18:S145-S152. doi: 10.1111/jcpe.12683
» https://doi.org/10.1111/jcpe.12683
- Webster JI, Tonelli L, Sternberg EM. Neuroendocrine regulation of immunity. Annu Rev Immunol. 2002;20:125-63. doi: 10.1146/annurev.immunol.20.082401.104914
» https://doi.org/10.1146/annurev.immunol.20.082401.104914
- Gallowitsch-Puerta M, Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci. 2007;80:2325-9. doi: 10.1016/j.lfs.2007.01.002
» https://doi.org/10.1016/j.lfs.2007.01.002
- Treinin M, Papke RL, Nizri E, Ben-David Y, Mizrachi T, Brenner T. Role of the alpha7 nicotinic acetylcholine receptor and RIC-3 in the cholinergic anti-inflammatory pathway. Cent Nerv Syst Agents Med Chem. 2017;17(2):90-9. doi: 10.2174/1871524916666160829114533
» https://doi.org/10.2174/1871524916666160829114533
- Lv J, Ji X, Li Z, Hao H. The role of the cholinergic anti-inflammatory pathway in autoimmune rheumatic diseases. Scand J Immunol. 2021;94:e13092. doi: 10.1111/sji.13092
» https://doi.org/10.1111/sji.13092
- Broide RS, Winzer-Serhan UH, Chen Y, Leslie FM. Distribution of alpha7 Nicotinic Acetylcholine Receptor Subunit mRNA in the developing mouse. Front Neuroanat. 2019;13:76. doi: 10.3389/fnana.2019.00076
» https://doi.org/10.3389/fnana.2019.00076
- Radu CM, Radu CC, Arbanasi EM, Hogea T, Murvai VR, Chi? IA, et al. Exploring the efficacy of novel therapeutic strategies for periodontitis: a literature review. Life (Basel). 2024;14(4):468. doi: 10.3390/life14040468
» https://doi.org/10.3390/life14040468
- Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol. 2016;594:5781-90. doi: 10.1113/JP271539
» https://doi.org/10.1113/JP271539
- Kaur S, Selden NR, Aballay A. Anti-inflammatory effects of vagus nerve stimulation in pediatric patients with epilepsy. Front Immunol. 2023;14:1093574. doi: 10.3389/fimmu.2023.1093574
» https://doi.org/10.3389/fimmu.2023.1093574
- Revathikumar P, Estelius J, Karmakar U, Le Maitre E, Korotkova M, Jakobsson PJ. et al. Microsomal prostaglandin E synthase-1 gene deletion impairs neuro-immune circuitry of the cholinergic anti-inflammatory pathway in endotoxaemic mouse spleen. PLoS One. 2018;13:e0193210. doi: 10.1371/journal.pone.0193210
» https://doi.org/10.1371/journal.pone.0193210
- Lei W, Duan Z. Advances in the treatment of cholinergic anti-inflammatory pathways in gastrointestinal diseases by electrical stimulation of vagus nerve. Digestion. 2021;102:128-38. doi: 10.1159/000504474
» https://doi.org/10.1159/000504474
- Keever KR, Cui K, Casteel JL, Singh S, Hoover DB, Williams DL. et al. Cholinergic signaling via the alpha7 nicotinic acetylcholine receptor regulates the migration of monocyte-derived macrophages during acute inflammation. J Neuroinflammation. 2024;21(1):3. doi: 10.1186/s12974-023-03001-7
» https://doi.org/10.1186/s12974-023-03001-7
- Tan Y, Chu Z, Shan H, Zhangsun D, Zhu X, Luo S. Inflammation regulation via an agonist and antagonists of alpha7 nicotinic acetylcholine receptors in RAW264.7 macrophages. Mar Drugs. 2022;20. doi: 10.3390/md20030200
» https://doi.org/10.3390/md20030200
- Mannon EC, Sun J, Wilson K, Brands M, Martinez-Quinones P, Baban B. et al. A basic solution to activate the cholinergic anti-inflammatory pathway via the mesothelium? Pharmacol Res. 2019;141:236-48. doi: 10.1016/j.phrs.2019.01.007
» https://doi.org/10.1016/j.phrs.2019.01.007
- Nakamura Y, Inoue T. Neuroimmune communication in the Kidney. JMA J. 2020;3:164-74. doi: 10.31662/jmaj.2020-0024
» https://doi.org/10.31662/jmaj.2020-0024
- Murray K, Barboza M, Rude KM, Brust-Mascher I, Reardon C. Functional circuitry of neuro-immune communication in the mesenteric lymph node and spleen. Brain Behav Immun. 2019;82:214-23. doi: 10.1016/j.bbi.2019.08.188
» https://doi.org/10.1016/j.bbi.2019.08.188
- Liu FJ, Wu J, Gong LJ, Yang HS, Chen H. Non-invasive vagus nerve stimulation in anti-inflammatory therapy: mechanistic insights and future perspectives. Front Neurosci. 2024;18:1490300. doi: 10.3389/fnins.2024.1490300
» https://doi.org/10.3389/fnins.2024.1490300
- Inoue T, Rosin DL, Okusa MD. CAPing inflammation and acute kidney injury. Kidney Int. 2016;90:462-5. doi: 10.1016/j.kint.2016.07.009
» https://doi.org/10.1016/j.kint.2016.07.009
- Inoue T, Abe C, Kohro T, Tanaka S, Huang L, Yao J, et al. Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney. Kidney Int. 2019;95:563-76. doi: 10.1016/j.kint.2018.09.020
» https://doi.org/10.1016/j.kint.2018.09.020
- Ma L, Wang HB, Hashimoto K. The vagus nerve: an old but new player in brain-body communication. Brain Behav Immun. 2025;124:28-39. doi: 10.1016/j.bbi.2024.11.023
» https://doi.org/10.1016/j.bbi.2024.11.023
- Zhang XF, Xiang SY, Geng WY, Cong WJ, Lu J, Jiang CW. et al. Electro-acupuncture regulates the cholinergic anti-inflammatory pathway in a rat model of chronic obstructive pulmonary disease. J Integr Med. 2018;16:418-26. doi: 10.1016/j.joim.2018.10.003
» https://doi.org/10.1016/j.joim.2018.10.003
- Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun. 2009;23:41-5. doi: 10.1016/j.bbi.2008.06.011
» https://doi.org/10.1016/j.bbi.2008.06.011
- Yang NN, Yang JW, Ye Y, Huang J, Wang L, Wang Y, et al. Electroacupuncture ameliorates intestinal inflammation by activating alpha7nAChR-mediated JAK2/STAT3 signaling pathway in postoperative ileus. Theranostics. 2021;11:4078-89. doi: 10.7150/thno.52574
» https://doi.org/10.7150/thno.52574
- Ding N, Wei Q, Deng W, Sun X, Zhang J, Gao W. Electroacupuncture alleviates inflammation of dry eye diseases by regulating the alpha7nAChR/NF-kappaB signaling pathway. Oxid Med Cell Longev. 2021;2021:6673610. doi: 10.1155/2021/6673610
» https://doi.org/10.1155/2021/6673610
- Chen H, Feng Z, Min L, Deng W, Tan M, Hong J. et al. Vagus nerve stimulation reduces neuroinflammation through microglia polarization regulation to improve functional recovery after spinal cord injury. Front Neurosci. 2022;16:813472. doi: 10.3389/fnins.2022.813472
» https://doi.org/10.3389/fnins.2022.813472
- Mira-Pascual L, Tran AN, Andersson G, Nareoja T, Lang P. A sub-clone of raw264.7-cells form osteoclast-like cells capable of bone resorption faster than parental RAW264.7 through increased de novo expression and nuclear translocation of NFATc1. Int J Mol Sci. 2020;21(2):538. doi: 10.3390/ijms21020538
» https://doi.org/10.3390/ijms21020538
- Gao Y, Ge W. The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis. Cell Death Dis. 2018;9:33. doi: 10.1038/s41419-017-0040-5
» https://doi.org/10.1038/s41419-017-0040-5
- Wang JY, Zhang Y, Chen Y, Wang Y, Li SY, Wang YF, et al. Mechanisms underlying antidepressant effect of transcutaneous auricular vagus nerve stimulation on CUMS model rats based on hippocampal alpha7nAchR/NF-kappaB signal pathway. J Neuroinflammation. 2021;18:291. doi: 10.1186/s12974-021-02341-6
» https://doi.org/10.1186/s12974-021-02341-6
- Zhang L, Wu Z, Zhou J, Lu S, Wang C, Xia Y, et al. Electroacupuncture ameliorates acute pancreatitis: a role for the vagus nerve-mediated cholinergic anti-inflammatory pathway. Front Mol Biosci. 2021;8:647647. doi: 10.3389/fmolb.2021.647647
» https://doi.org/10.3389/fmolb.2021.647647
- Lisboa MR, Gondim DV, Ervolino E, Vale ML, Frota NP, Nunes NL. et al. Effects of electroacupuncture on experimental periodontitis in rats. J Periodontol. 2015;86:801-11. doi: 10.1902/jop.2015.140630
» https://doi.org/10.1902/jop.2015.140630
- Zoheir N, Lappin DF, Nile CJ. Acetylcholine and the alpha 7 nicotinic receptor: a potential therapeutic target for the treatment of periodontal disease? Inflamm Res. 2012;61:915-26. doi: 10.1007/s00011-012-0513-z
» https://doi.org/10.1007/s00011-012-0513-z
- Hamoudi D, Bouredji Z, Marcadet L, Yagita H, Landry LB, Argaw A. et al. Muscle weakness and selective muscle atrophy in osteoprotegerin-deficient mice. Hum Mol Genet. 2020;29:483-94. doi: 10.1093/hmg/ddz312
» https://doi.org/10.1093/hmg/ddz312
- Ninomiya H, Fukuda S, Nishida-Fukuda H, Shibata Y, Sato T, Nakamichi Y. et al. Osteoprotegerin secretion and its inhibition by RANKL in osteoblastic cells visualized using bioluminescence imaging. Bone. 2025;191:117319. doi: 10.1016/j.bone.2024.117319
» https://doi.org/10.1016/j.bone.2024.117319
- Kadriu B, Gold PW, Luckenbaugh DA, Lener MS, Ballard ED, Niciu MJ, et al. Acute ketamine administration corrects abnormal inflammatory bone markers in major depressive disorder. Mol Psychiatry. 2018;23(7):1626-31. doi: 10.1038/mp.2017.109
» https://doi.org/10.1038/mp.2017.109
- Teodorescu AC, Martu I, Teslaru S, Kappenberg-Nitescu DC, Goriuc A, Luchian I. et al. Assessment of salivary levels of RANKL and OPG in aggressive versus chronic periodontitis. J Immunol Res. 2019;2019:6195258. doi: 10.1155/2019/6195258
» https://doi.org/10.1155/2019/6195258
- Hao S, Zhang J, Huang B, Feng D, Niu X, Huang W. Bone remodeling serum markers in children with systemic lupus erythematosus. Pediatr Rheumatol Online J. 2022;20:54. doi: 10.1186/s12969-022-00717-3
» https://doi.org/10.1186/s12969-022-00717-3
- Liu K, Yang L, Wang X, Huang Q, Tuerhong K, Yang M, et al. Electroacupuncture regulates macrophage, neutrophil, and oral microbiota to alleviate alveolar bone loss and inflammation in experimental ligature-induced periodontitis. J Clin Periodontol. 2023;50:368-79. doi: 10.1111/jcpe.13748
» https://doi.org/10.1111/jcpe.13748
- Go YY, Ju WM, Lee CM, Chae SW, Song JJ. Different transcutaneous auricular vagus nerve stimulation parameters modulate the anti-inflammatory effects on lipopolysaccharide-induced acute inflammation in mice. Biomedicines. 2022;10(2):247. doi: 10.3390/biomedicines10020247
» https://doi.org/10.3390/biomedicines10020247
- Toyabe S, Iiai T, Fukuda M, Kawamura T, Suzuki S, Uchiyama M. et al. Identification of nicotinic acetylcholine receptors on lymphocytes in the periphery as well as thymus in mice. Immunology. 1997;92:201-5. doi: 10.1046/j.1365-2567.1997.00323.x
» https://doi.org/10.1046/j.1365-2567.1997.00323.x
- Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458-62. doi: 10.1038/35013070
» https://doi.org/10.1038/35013070
- Wang Y, Po SS, Scherlag BJ, Yu L, Jiang H. The role of low-level vagus nerve stimulation in cardiac therapy. Expert Rev Med Devices. 2019;16:675-82. doi: 10.1080/17434440.2019.1643234
» https://doi.org/10.1080/17434440.2019.1643234
- Fang YT, Lin YT, Tseng WL, Tseng P, Hua GL, Chao YJ, et al. Neuroimmunomodulation of vagus nerve stimulation and the therapeutic implications. Front Aging Neurosci. 2023;15:1173987. doi: 10.3389/fnagi.2023.1173987
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Honghui Xie, Ping Huang, Aihong Tan, Zhijian Su, Ying Fu

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.