Monocytes and Macrophage-derived mediators influence the behavior of squamous cell carcinoma cell lines
DOI:
https://doi.org/10.1590/Keywords:
Macrophage, Monocytes, Squamous cell carcinomaAbstract
Immune cells play diverse roles in cancer development. Myeloid cells are key drivers of tumor-escape mechanisms as they suppress immune responses, facilitate metastasis, and contribute to therapy resistance. In particular, macrophages can be polarized into an inflammatory M1 (anti-tumor) or anti-inflammatory M2 (pro-tumor) phenotype. M2 macrophages are associated with tumor progression, as they secrete factors that promote tumor angiogenesis, suppress T-cell activity, and correlate with poor clinical outcomes in squamous cell carcinoma (SCC). Given this context, this study aims to demonstrate the biological effects of monocytes and both M1 and M2 macrophages in squamous cell carcinoma. Our data indicate higher CD163 immunoreactivity in biopsies from SCC patients. Furthermore, we found that a conditioned medium (CM) containing bioactive compound generated by M2 macrophages enhances the proliferation and invasion of the SCC-25 cell line in vitro. Surprisingly, CM derived from blood CD14+ monocytes increased SCC-25 proliferation at the same rate of M2 macrophages-CM. M1 macrophages conditioned medium significantly enhanced the motility and decreased proliferation in Detroit 562 cells. The analysis of tumor-associated transcripts showed that both M1 and M2 conditioned medium induced high levels of EPCAM mRNA and significantly decreased the expression of MYC, an epithelial-to-mesenchymal transition marker, in SCC cell lines. Detroit cells exposed to conditioned medium from monocytes and macrophage also showed elevated SOX2 mRNA levels. The findings suggest that monocytes and macrophage mediators exert distinct biological effects on SCC cell lines.
Downloads
References
- Ausoni S, Boscolo-Rizzo P, Singh B, Da Mosto MC, Spinato G, Tirelli G, et al. Targeting cellular and molecular drivers of head and neck squamous cell carcinoma: current options and emerging perspectives. Cancer Metastasis Rev. 2016;35(3):413-26. doi: 10.1007/s10555-016-9625-1
» https://doi.org/10.1007/s10555-016-9625-1
- Johnson DE, Burtness B, Leemans CR, Lui VW, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;26(1):92. doi: 10.1038/s41572-020-00224-3.
» https://doi.org/10.1038/s41572-020-00224-3
- World Health Organization. International Agency for Research on Cancer. IARC Monographs on the identification of carcinogenic Hazards to humans. Agents classified by the IARC monographs, volumes 1-139 [internet]. Lyon: IARC; 2025. Available from: https://monographs.iarc.fr/agents-classified-by-the-iarc/
» https://monographs.iarc.fr/agents-classified-by-the-iarc/
- Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761-73. doi: 10.7150/jca.17648
» https://doi.org/10.7150/jca.17648
- Peltanova B, Raudenska M, Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer. 2019;18(1):63. doi: 10.1186/s12943-019-0983-5
» https://doi.org/10.1186/s12943-019-0983-5
- Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022;21(11):799-820. doi: 10.1038/s41573-022-00520-5
» https://doi.org/10.1038/s41573-022-00520-5
- Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17(12):887-904. doi: 10.1038/nrd.2018.169
» https://doi.org/10.1038/nrd.2018.169
- Zhang Q, Sioud M. Tumor-associated macrophage subsets: shaping polarization and targeting. Int J Mol Sci. 2023;24(8):7493. doi: 10.3390/ijms24087493
» https://doi.org/10.3390/ijms24087493
- Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;15;877:173090. doi: 10.1016/j.ejphar.2020.173090
» https://doi.org/10.1016/j.ejphar.2020.173090
- Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787-95. doi: 10.1172/JCI59643
» https://doi.org/10.1172/JCI59643
- Aizaz M, Khan A, Khan F, Khan M, Musad Saleh EA, Nisar M, et al. The cross-talk between macrophages and tumor cells as a target for cancer treatment. Front Oncol. 2023;13:1259034. doi: 10.3389/fonc.2023.1259034
» https://doi.org/10.3389/fonc.2023.1259034
- Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-40. doi: 10.1002/jcp.26429
» https://doi.org/10.1002/jcp.26429
- Zhou D, Yang K, Chen L, Zhang W, Xu Z, Zuo J, et al. Promising landscape for regulating macrophage polarization: epigenetic viewpoint. Oncotarget. 2017;8(34):57693-706. doi: 10.18632/oncotarget.17027
» https://doi.org/10.18632/oncotarget.17027
- Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13. doi: 10.12703/P6-13
» https://doi.org/10.12703/P6-13
- Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177(10):7303-11. doi: 10.4049/jimmunol.177.10.7303
» https://doi.org/10.4049/jimmunol.177.10.7303
- Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27-41. doi: 10.1016/j.immuni.2019.06.025
» https://doi.org/10.1016/j.immuni.2019.06.025
- Ai Y, Liu S, Luo H, Wu S, Wei H, Tang Z, et al. lncRNA DCST1-AS1 Facilitates oral squamous cell carcinoma by promoting M2 macrophage polarization through activating NF-?B Signaling. J Immunol Res. 2021;2021:5524231. doi: 10.1155/2021/5524231
» https://doi.org/10.1155/2021/5524231
- Mori K, Hiroi M, Shimada J, Ohmori Y. Infiltration of m2 tumor-associated macrophages in oral squamous cell carcinoma correlates with tumor malignancy. Cancers (Basel). 2011;3(4):3726-39. doi: 10.3390/cancers3043726
» https://doi.org/10.3390/cancers3043726
- Balermpas P, Rödel F, Liberz R, Oppermann J, Wagenblast J, Ghanaati S, et al. Head and neck cancer relapse after chemoradiotherapy correlates with CD163+ macrophages in primary tumour and CD11b+ myeloid cells in recurrences. Br J Cancer. 2014;111(8):1509-18. doi: 10.1038/bjc.2014.446
» https://doi.org/10.1038/bjc.2014.446
- Fonseca FP, Andrade BA, Rangel AL, Della Coletta R, Lopes MA, Almeida OP, et al. Tissue microarray is a reliable method for immunohistochemical analysis of pleomorphic adenoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117(1):81-8. doi: 10.1016/j.oooo.2013.08.029
» https://doi.org/10.1016/j.oooo.2013.08.029
- Perri G, Vilas Boas VG, Nogueira MR, Mello Júnior EJ, Coelho AL, Posadas EM, et al. Interleukin 33 supports squamous cell carcinoma growth via a dual effect on tumour proliferation, migration and invasion, and T cell activation. Cancer Immunol Immunother. 2024;73(6):110. doi: 10.1007/s00262-024-03676-8.
» https://doi.org/10.1007/s00262-024-03676-8
- Kazakova E, Iamshchikov P, Larionova I, Kzhyshkowska J. Macrophage scavenger receptors: tumor support and tumor inhibition. Front Oncol. 2023;12:1096897. doi: 10.3389/fonc.2022.1096897
» https://doi.org/10.3389/fonc.2022.1096897
- Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O'Brien-Simpson NM. Tumor associated macrophages: origin, recruitment, phenotypic diversity, and targeting. Front Oncol. 2021;11:788365. doi: 10.3389/fonc.2021.788365
» https://doi.org/10.3389/fonc.2021.788365
- Wu K, Lin K, Li X, Yuan X, Xu P, Ni P, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol. 2020;11:1731. doi: 10.3389/fimmu.2020.01731
» https://doi.org/10.3389/fimmu.2020.01731
- Ma RY, Black A, Qian BZ. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 2022;43(7):546-63. doi: 10.1016/j.it.2022.04.008
» https://doi.org/10.1016/j.it.2022.04.008
- Sainz B Jr, Carron E, Vallespinós M, Machado HL. Cancer stem cells and macrophages: implications in tumor biology and therapeutic strategies. Mediators Inflamm. 2016;2016:9012369. doi: 10.1155/2016/9012369
» https://doi.org/10.1155/2016/9012369
- Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549-55. doi: 10.1016/s1471-4906(02)02302-5
» https://doi.org/10.1016/s1471-4906(02)02302-5
- Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958-69. doi: 10.1038/nri2448.
» https://doi.org/10.1038/nri2448
- Chen L, Mei W, Song J, Chen K, Ni W, Wang L, et al. CD163 protein inhibits lipopolysaccharide-induced macrophage transformation from M2 to M1 involved in disruption of the TWEAK-Fn14 interaction. Heliyon. 2023;4;10(1):e23223. doi: 10.1016/j.heliyon.2023.e23223
» https://doi.org/10.1016/j.heliyon.2023.e23223
- Agarbati S, Mascitti M, Paolucci E, Togni L, Santarelli A, Rubini C, et al. Prognostic relevance of macrophage phenotypes in high-grade oral tongue squamous cell carcinomas. Appl Immunohistochem Mol Morphol. 2021;29(5):359-65. doi: 10.1097/PAI.0000000000000867
» https://doi.org/10.1097/PAI.0000000000000867
- Hao NB, Lü MH, Fan YH, Cao YL, Zhang ZR, Yang SM. Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. 2012;2012:948098. doi: 10.1155/2012/948098
» https://doi.org/10.1155/2012/948098
- Nasrollahzadeh E, Razi S, Keshavarz-Fathi M, Mazzone M, Rezaei N. Pro-tumorigenic functions of macrophages at the primary, invasive and metastatic tumor site. Cancer Immunol Immunother. 2020;69(9):1673-97. doi: 10.1007/s00262-020-02616-6
» https://doi.org/10.1007/s00262-020-02616-6
- Zhang Y, Ding X, Zhang X, Li Y, Xu R, Li HJ, et al. Unveiling the contribution of tumor-associated macrophages in driving epithelial-mesenchymal transition: a review of mechanisms and therapeutic strategies. Front Pharmacol. 2024;15:1404687. doi: 10.3389/fphar.2024.1404687
» https://doi.org/10.3389/fphar.2024.1404687
- Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084. doi: 10.3389/fimmu.2020.583084
» https://doi.org/10.3389/fimmu.2020.583084
- Alves A, Diel L, Ramos G, Pinto A, Bernardi L, Yates J 3rd, et al. Tumor microenvironment and oral squamous cell carcinoma: a crosstalk between the inflammatory state and tumor cell migration. Oral Oncol. 2021;112:105038. doi: 10.1016/j.oraloncology.2020.105038
» https://doi.org/10.1016/j.oraloncology.2020.105038
- Bied M, Ho WW, Ginhoux F, Blériot C. Roles of macrophages in tumor development: a spatiotemporal perspective. Cell Mol Immunol 2023;983-92. doi: 10.1038/s41423-023-01061-6
» https://doi.org/10.1038/s41423-023-01061-6
- Chung JH, Jung HR, Jung AR, Lee YC, Kong M, Lee JS, et al. SOX2 activation predicts prognosis in patients with head and neck squamous cell carcinoma. Sci Rep. 2018;8(1):1677. doi: 10.1038/s41598-018-20086-w
» https://doi.org/10.1038/s41598-018-20086-w
- Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell. 2010;140(3):349-59. doi: 10.1016/j.cell.2009.12.049
» https://doi.org/10.1016/j.cell.2009.12.049
- Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399-416. doi: 10.1038/nrclinonc.2016.217
» https://doi.org/10.1038/nrclinonc.2016.217
- Prime SS, Cirilo N, Parkinson EK. Escape from cellular senescence is associated with chromosomal instability in oral pre-malignancy. Biology (Basel). 2023;12(1):103. doi: 10.3390/biology12010103
» https://doi.org/10.3390/biology12010103
- Gabrilovich DI. The Dawn of myeloid-derived suppressor cells: identification of arginase i as the mechanism of immune suppression. Cancer Res. 2021;81(15):3953-5. doi: 10.1158/0008-5472.CAN-21-1237
» https://doi.org/10.1158/0008-5472.CAN-21-1237
- Zhu P, Baek SH, Bourk EM, Ohgi KA, Garcia-Bassets I, Sanjo H, et al. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell. 2006;124(3):615-29. doi: 10.1016/j.cell.2005.12.032
» https://doi.org/10.1016/j.cell.2005.12.032
- Lv C, Li S, Zhao J, Yang P, Yang C. M1 macrophages enhance survival and invasion of oral squamous cell carcinoma by inducing GDF15-Mediated ErbB2 Phosphorylation. ACS Omega. 2022;7(13):11405-14. doi: 10.1021/acsomega.2c00571.
» https://doi.org/10.1021/acsomega.2c00571
- Jiang P, Wang L, Zhang M, Zhang M, Wang C, Zhao R, et al. Cannabinoid type 2 receptor manipulates skeletal muscle regeneration partly by regulating macrophage M1/M2 polarization in IR injury in mice. Life Sci. 2020;256:117989. doi: 10.1016/j.lfs.2020.117989
» https://doi.org/10.1016/j.lfs.2020.117989
- Engström A, Erlandsson A, Delbro D, Wijkander J. Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2. Int J Oncol. 2014;44(2):385-92. doi: 10.3892/ijo.2013.2203
» https://doi.org/10.3892/ijo.2013.2203
- Matsuda T, Takeuchi H, Matsuda S, Hiraiwa K, Miyasho T, Okamoto M, et al. EpCAM, a potential therapeutic target for esophageal squamous cell carcinoma. Ann Surg Oncol. 2014;21 Suppl 3:S356-64. doi: 10.1245/s10434-014-3579-8
» https://doi.org/10.1245/s10434-014-3579-8
- Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014;511(7508):246-50. doi: 10.1038/nature13305
» https://doi.org/10.1038/nature13305
- García-Gutiérrez L, Delgado MD, León J. MYC oncogene contributions to release of cell cycle brakes. Genes (Basel). 2019;10(3):244. doi: 10.3390/genes10030244
» https://doi.org/10.3390/genes10030244
- Wang H, Mannava S, Grachtchouk V, Zhuang D, Soengas MS, Gudkov AV, et al. c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene. 2008 Mar 20;27(13):1905-15. doi: 10.1038/sj.onc.1210823
» https://doi.org/10.1038/sj.onc.1210823
- Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van den Bossche J, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010;70(14):5728-39. doi: 10.1158/0008-5472.CAN-09-4672
» https://doi.org/10.1158/0008-5472.CAN-09-4672
- Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010 Apr 2;141(1):39-51. doi: 10.1016/j.cell.2010.03.014
» https://doi.org/10.1016/j.cell.2010.03.014
- Ojalvo LS, King W, Cox D, Pollard JW. High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol. 2009;174(3):1048-64. doi: 10.2353/ajpath.2009.080676
» https://doi.org/10.2353/ajpath.2009.080676
- Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci. 2022;29(1):83. doi: 10.1186/s12929-022-00866-3
» https://doi.org/10.1186/s12929-022-00866-3
- Hill MS, Vande Zande P, Wittkopp PJ. Molecular and evolutionary processes generating variation in gene expression. Nat Rev Genet. 2021 Apr;22(4):203-215. doi: 10.1038/s41576-020-00304-w
» https://doi.org/10.1038/s41576-020-00304-w
- Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9(5):361-71. doi: 10.1038/nrc2628
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Graziela Perri, Raíssa Gabrieli Candido, Luiz Henrique Camargo Soares, Rafael Carneiro Ortiz, Izabel de Camargo, Maria Renata Sales Nogueira, Edgard José Franco Merllo Júnior, Ana Lucia Coelho, Edwin M Posadas, Cory Hogaboam, Karen A Cavassani, Ana Paula Campanelli

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.