Evaluation of the levels of Fractalkine (CX3CL1), TNF-α, and TGF-β in the gingival crevicular fluid/tissue of patients with gingival overgrowth: a cross-sectional observational study
DOI:
https://doi.org/10.1590/Keywords:
CX3CL1, Gingival overgrowth, Amlodipine, CytokineAbstract
Fractalkine (CX3CL1) is expressed by various cells, contributing to the pathogenesis of diseases such as diabetes mellitus, vascular pathologies, and rheumatoid arthritis via immunological mechanisms. The CX3CL1–CX3CR1 axis regulates cellular responses such as proliferation and collagen production, which are implicated in gingival overgrowth (GO). Objectives This study aimed to assess the levels of CX3CL1, tumor necrosis factor-α (TNF-α), and transforming growth factor-beta (TGF-β) in both gingival crevicular fluid (GCF) and gingival tissues among patients with biofilm- and amlodipine-induced GO. Additionally, the potential relationship between these biomarkers and clinical periodontal parameters was evaluated. Methods The study included 17 participants with biofilm-induced GO (Group I), 18 participants with amlodipine-induced GO (Group A), and 10 systemically healthy participants without GO (Control). CX3CL1, TNF-α, and TGF-β levels in GCF samples were assessed using enzyme-linked immunosorbent assay (ELISA). Moreover, mRNA expression levels of CX3CL1, TNF-α, and TGF-β in tissue samples were determined by quantitative real-time PCR (qPCR). Results The total GCF CX3CL1 level was significantly higher in Group I and Group A compared to controls. However, tissue CX3CL1 and TNF-α levels were significantly higher in Group I than Group A (p<0.05). In Group A, total GCF CX3CL1 levels showed a positive correlation with the gingival index (GI) (r=0.644), bleeding on probing (BOP) (r=0.622), and GCF volume (r=0.720). A significant positive correlation was observed between tissue CX3CL1 and TNF-α levels (r=0.762) (p<0.05). In Group I, a significant correlation was observed between total GCF CX3CL1 and TNF-α, TGF-β, and GCF volume levels, respectively (r=0.865, r=0.845, r=0.651). A positive correlation (p<0.05) was also found between tissue CX3CL1 and TNF-α and TGF-β levels, respectively (r=0.689, r=0.903). Conclusion CX3CL1 may have a potential role in the development of GO-associated tissue fibrosis and its inflammatory mechanisms.
Downloads
References
- Grover V, Kapoor A, Marya CM. Amlodipine induced gingival hyperplasia. J Oral Health Comm Dent. 2007;1(1):19-22.
- Seymour RA, Ellis JS, Thomason JM. Risk factors for drug-induced gingival overgrowth. J Clin Periodontol. 2000;27(4):217-23. doi: 10.1034/j.1600-051x.2000.027004217.x
» https://doi.org/10.1034/j.1600-051x.2000.027004217.x
- Gaur S, Agnihotri R. Is dental plaque the only etiological factor in Amlodipine induced gingival overgrowth? A systematic review of evidence. J Clin Exp Dent. 2018;10(6):e610-e619. doi: 10.4317/jced.54715
» https://doi.org/10.4317/jced.54715
- Joshi S, Bansal S. A rare case report of amlodipine-induced gingival enlargement and review of its pathogenesis. Case Rep Dent. 2013;2013:138248. doi: 10.1155/2013/138248
» https://doi.org/10.1155/2013/138248
- Tanaka Y, Hoshino-Negishi K, Kuboi Y, Tago F, Yasuda N, Imai T. Emerging role of fractalkine in the treatment of rheumatic diseases. Immunotargets Ther. 2020;9:241-53. doi: 10.2147/ITT.S277991
» https://doi.org/10.2147/ITT.S277991
- Turner SL, Mangnall D, Bird NC, Blair-Zajdel ME, Bunning RA. Effects of pro-inflammatory cytokines on the production of soluble fractalkine and ADAM17 by HepG2 cells. J Gastrointestin Liver Dis. 2010;19(3):265-71
- Garcia GE, Xia Y, Chen S, Wang Y, Ye RD, Harrison JK, Bacon KB, Zerwes HG, Feng L. NF-kappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1beta, TNF-alpha, and LPS. J Leukoc Biol. 2000;67(4):577-84. doi: 10.1002/jlb.67.4.577
- Buskermolen JK, Roffel S, Gibbs S. Stimulation of oral fibroblast chemokine receptors identifies CCR3 and CCR4 as potential wound healing targets. J Cell Physiol. 2017;232(11):2996-3005. doi: 10.1002/jcp.25946
» https://doi.org/10.1002/jcp.25946
- Zhuang Q, Ou J, Zhang S, Ming Y. Crosstalk between the CX3CL1/CX3CR1 axis and inflammatory signaling pathways in tissue injury. Curr Protein Pept Sci. 2019;20(8):844-54. doi: 10.2174/1389203720666190305165722
» https://doi.org/10.2174/1389203720666190305165722
- Pisoschi C, Stanciulescu C, Banita M. Growth factors and connective tissue homeostasis in periodontal disease. In: Budunelli N, editor. Pathogenesis and treatment of periodontitis. London: InTech; 2012. p. 55-80. doi: 10.5772/33669
» https://doi.org/10.5772/33669
- Arai M, Ikawa Y, Chujo S, Hamaguchi Y, Ishida W, Shirasaki F, et al. Chemokine receptors CCR2 and CX3CR1 regulate skin fibrosis in the mouse model of cytokine-induced systemic sclerosis. J Dermatol Sci. 2013;69(3):250-8. doi: 10.1016/j.jdermsci.2012.10.010
» https://doi.org/10.1016/j.jdermsci.2012.10.010
- Peng X, Zhang J, Xiao Z, Dong Y, Du J. CX3CL1-CX3CR1 Interaction Increases the Population of Ly6C(-)CX3CR1(hi) macrophages contributing to unilateral ureteral obstruction-induced fibrosis. J Immunol. 2015;195(6):2797-805. doi: 10.4049/jimmunol.1403209
» https://doi.org/10.4049/jimmunol.1403209
- Aoyama T, Inokuchi S, Brenner DA, Seki E. CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology. 2010;52(4):1390-400. doi: 10.1002/hep.23795
» https://doi.org/10.1002/hep.23795
- Chen S, Luo D, Streit WJ, Harrison JK. TGF-beta1 upregulates CX3CR1 expression and inhibits fractalkine-stimulated signaling in rat microglia. J Neuroimmunol. 2002;133(1-2):46-55. doi: 10.1016/s0165-5728(02)00354-5
- Hosokawa Y, Nakanishi T, Yamaguchi D, Nakae H, Matsuo T. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, in periodontal diseased tissue. Clin Exp Immunol. 2005;139(3):506-12. doi: 10.1111/j.1365-2249.2005.02675
» https://doi.org/10.1111/j.1365-2249.2005.02675
- Panezai J, Ali A, Ghaffar A, Benchimol D, Altamash M, Klinge B, et al. Upregulation of circulating inflammatory biomarkers under the influence of periodontal disease in rheumatoid arthritis patients. Cytokine. 2020;131:155117. doi: 10.1016/j.cyto.2020.155117
» https://doi.org/10.1016/j.cyto.2020.155117
- Balci N, Cekici A, Kurgan S, Sahinkaya S, Serdar MA. Potential biomarkers reflecting inflammation in patients with severe periodontitis: Fractalkine (CX3CL1) and its receptor (CX3CR1). J Periodontal Res. 2021;56(3):589-96. doi: 10.1111/jre.12859
» https://doi.org/10.1111/jre.12859
- Yilmaz D, Gönüllü E, Gürsoy M, Könönen E, Gürsoy UK. Salivary and serum concentrations of monocyte chemoattractant protein-1, macrophage inhibitory factor, and fractalkine in relation to rheumatoid arthritis and periodontitis. J Periodontol. 2021;92(9):1295-305. doi: 10.1002/JPER.20-0632
» https://doi.org/10.1002/JPER.20-0632
- Chen X, Yang Y, Sun S, Liu Q, Yang Y, Jiang L. CX3C chemokine: Hallmarks of fibrosis and ageing. Pharmacol Res. 2024;208:107348. doi: 10.1016/j.phrs.2024.107348
» https://doi.org/10.1016/j.phrs.2024.107348
- Caton JG, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman KS, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. J Clin Periodontol. 2018;45 Suppl 20:S1-S8. doi: 10.1111/jcpe.12935
» https://doi.org/10.1111/jcpe.12935
- Miller CS, Damm DD. Incidence of verapamil-induced gingival hyperplasia in a dental population. J Periodontol. 1992;63(5):453-6. doi: 10.1902/jop.1992.63.5.453
» https://doi.org/10.1902/jop.1992.63.5.453
- Silness J, Loe H. Periodontal disease in pregnancy. II. correlation between oral hygiene and periodontal condition. Acta Odontol Scand. 1964;22:121-35. doi: 10.3109/00016356408993968
» https://doi.org/10.3109/00016356408993968
- Loe H, Silness J. Periodontal disease in pregnancy. I. Prevalence and severity. Acta Odontol Scand. 1963;21:533-51. doi: 10.3109/00016356309011240
» https://doi.org/10.3109/00016356309011240
- Ainamo J, Bay I. Problems and proposals for recording gingivitis and plaque. Int Dent J. 1975;25(4):229-3
- Hatipoglu H, Yamalik N, Berberoglu A, Eratalay K. Impact of the distinct sampling area on volumetric features of gingival crevicular fluid. J Periodontol. 2007;78(4):705-15. doi: 10.1902/jop.2007.060331
» https://doi.org/10.1902/jop.2007.060331
- Kuru L, Griffiths GS, Petrie A, Olsen I. Changes in transforming growth factor-beta1 in gingival crevicular fluid following periodontal surgery. J Clin Periodontol. 2004;31(7):527-33. doi: 10.1111/j.1600-051x.2004.00521.x
» https://doi.org/10.1111/j.1600-051x.2004.00521.x
- Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. doi: 10.1093/nar/29.9.e45
» https://doi.org/10.1093/nar/29.9.e45
- Hamzaoui K, Houman H, Ben Dhifallah I, Kamoun M, Hamzaoui A. Serum BAFF levels and skin mRNA expression in patients with Behçet's disease. Clin Exp Rheumatol. 2008;26(4 Suppl 50):S64-71
- Yamalik N, Caglayan F, Kilinç K, Kilinç A, Tümer C. The importance of data presentation regarding gingival crevicular fluid myeloperoxidase and elastase-like activity in periodontal disease and health status. J Periodontol. 2000;71(3):460-7. doi: 10.1902/jop.2000.71.3.460
» https://doi.org/10.1902/jop.2000.71.3.460
- Griffiths GS. Formation, collection and significance of gingival crevice fluid. Periodontol 2000. 2003;31:32-42. doi: 10.1034/j.1600-0757.2003.03103.x
» https://doi.org/10.1034/j.1600-0757.2003.03103.x
- Bhardwaj S, Prabhuji ML. Comparative volumetric and clinical evaluation of peri-implant sulcular fluid and gingival crevicular fluid. J Periodontal Implant Sci. 2013;43(5):233-42. doi: 10.5051/jpis.2013.43.5.23
» https://doi.org/10.5051/jpis.2013.43.5.23
- Seymour RA, Thomason JM, Ellis JS. The pathogenesis of drug-induced gingival overgrowth. J Clin Periodontol. 1996;23(3 Pt 1):165-75. doi: 10.1111/j.1600-051x.1996.tb02072.x
» https://doi.org/10.1111/j.1600-051x.1996.tb02072.x
- Pasupuleti MK, Musalaiah SV, Nagasree M, Kumar PA. Combination of inflammatory and amlodipine induced gingival overgrowth in a patient with cardiovascular disease. Avicenna J Med. 2013;3(3):68-72. doi: 10.4103/2231-0770.118462
» https://doi.org/10.4103/2231-0770.118462
- Camargo PM, Melnick PR, Pirih FQ, Lagos R, Takei HH. Treatment of drug-induced gingival enlargement: aesthetic and functional considerations. Periodontol 2000. 2001;27:131-8. doi: 10.1034/j.1600-0757.2001.027001131.x
» https://doi.org/10.1034/j.1600-0757.2001.027001131.x
- Güncü GN, Caglayan F, Dinçel A, Bozkurt A, Ozmen S, Karabulut E. Clinical and pharmacological variables as a risk factor for nifedipine-induced gingival overgrowth. Aust Dent J. 2007;52(4):295-9. doi: 10.1111/j.1834-7819.2007.tb00505.x
» https://doi.org/10.1111/j.1834-7819.2007.tb00505.x
- Miranda J, Brunet L, Roset P, Berini L, Farré M, Mendieta C. Prevalence and risk of gingival enlargement in patients treated with nifedipine. J Periodontol. 2001;72(5):605-11. doi: 10.1902/jop.2001.72.5.605
» https://doi.org/10.1902/jop.2001.72.5.605
- Alarcón-Sánchez MA, Becerra-Ruiz JS, Guerrero-Velázquez C, Mosaddad SA, Heboyan A. The role of the CX3CL1/CX3CR1 axis as potential inflammatory biomarkers in subjects with periodontitis and rheumatoid arthritis: A systematic review. Immun Inflamm Dis. 2024;12(2):e1181. doi: 10.1002/iid3.1181
» https://doi.org/10.1002/iid3.1181
- Wang L, Sun Z, Liu L, Peng B. Expression of CX3CL1 and its receptor, CX3CR1, in the development of periapical lesions. Int Endod J. 2014;47(3):271-9. doi: 10.1111/iej.12143
» https://doi.org/10.1111/iej.12143
- Lauritano D, Lucchese A, Di Stasio D, Della Vella F, Cura F, Palmieri A, et al. Molecular aspects of drug-induced gingival overgrowth: an in vitro study on amlodipine and gingival fibroblasts. Int J Mol Sci. 2019;20(8):2047. doi: 10.3390/ijms20082047
» https://doi.org/10.3390/ijms20082047
- Subramani T, Dhanaraj L, Senthilkumar K, Periasamy S, Abraham G, Rao S. Expression of TNF-a and RANTES in drug-induced human gingival overgrowth. Indian J Pharmacol. 2010;42(3):174-7. doi: 10.4103/0253-7613.66842
» https://doi.org/10.4103/0253-7613.66842
- Gokul K, Faizuddin M, Pradeep AR. Estimation of the level of tumor necrosis factor- a in gingival crevicular fluid and serum in periodontal health & disease: a biochemical study. Indian J Dent Res. 2012;23(3):348-52. doi: 10.4103/0970-9290.102221
» https://doi.org/10.4103/0970-9290.102221
- Subramani T, Rathnavelu V, Alitheen NB, Padmanabhan P. Cellular crosstalk mechanism of Toll-like receptors in gingival overgrowth (review). Int J Mol Med. 2015;35(5):1151-8. doi: 10.3892/ijmm.2015.214
» https://doi.org/10.3892/ijmm.2015.214
- Kuru L, Yilmaz S, Kuru B, Köse KN, Noyan U. Expression of growth factors in the gingival crevice fluid of patients with phenytoin-induced gingival enlargement. Arch Oral Biol. 2004;49(11):945-50. doi: 10.1016/j.archoralbio.2004.04.010
» https://doi.org/10.1016/j.archoralbio.2004.04.010
- Shimizu K, Furuichi K, Sakai N, Kitagawa K, Matsushima K, Mukaida N, et al. Fractalkine and its receptor, CX3CR1, promote hypertensive interstitial fibrosis in the kidney. Hypertens Res. 2011;34(6):747-52. doi: 10.1038/hr.2011.23
» https://doi.org/10.1038/hr.2011.23
- Ishida, Y., J.-L. Gao, and P.M. Murphy, Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. The Journal of Immunology, 2008. 180(1): p. 569-579. doi: 10.4049/jimmunol.180.1.569
» https://doi.org/10.4049/jimmunol.180.1.569
- Ishida Y, Gao JL, Murphy PM. Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J Immunol. 2008;180(1):569-79. doi: 10.4049/jimmunol.180.1.569
» https://doi.org/10.4049/jimmunol.180.1.569
- Klosowska K, Volin MV, Huynh N, Chong KK, Halloran MM, Woods JM. Fractalkine functions as a chemoattractant for osteoarthritis synovial fibroblasts and stimulates phosphorylation of mitogen-activated protein kinases and Akt. Clin Exp Immunol. 2009;156(2):312-9. doi: 10.1111/j.1365-2249.2009.03903.x
» https://doi.org/10.1111/j.1365-2249.2009.03903.x
- amashmous S, Kotsakis GA, Jain S, Chang AM, McLean JS, Darveau RP. Clinically healthy human gingival tissues show significant inter-individual variability in GCF chemokine expression and subgingival plaque microbial composition. Front Oral Health. 2021;2:689475. doi: 10.3389/froh.2021.689475
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nazife Hamurcu, Ahu Uraz Çörekci, Rahşan Ilikçi Sağkan, Serpil Cula, Deniz Özbay Çetiner

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.