Modification of restorative glass ionomer cement with zinc oxide nanoparticles and calcium glycerophosphate microparticles: in vitro assessment of mechanical properties and antimicrobial activity
DOI:
https://doi.org/10.1590/Keywords:
Resin-modified glass ionomer cement, Phosphate, Zinc oxide nanoparticles, Biofilm, Mechanical propertiesAbstract
The incorporation of bioactive agents into resin-modified glass ionomer cement (RMGIC) is a promising strategy to improve its mechanical strength and biofilm control, especially for patients with active dental caries. Objective This study aimed to evaluate the effects of incorporating ZnONPs and CaGP into RMGIC on its mechanical and microbiological properties. Design Six groups were tested: 1) RMGIC (without CaGP/ZnONPs); 2) RMGIC-1.0%ZnONPs; 3) RMGIC-2.0%ZnONPs; 4) RMGIC-3.0%CaGP; 5) RMGIC-3.0%CaGP-1.0%ZnONPs; and 6) RMGIC-3.0%CaGP-2.0%ZnONPs. The compressive strength (CS), diametral tensile strength (DTS), and surface hardness (SH) were evaluated after 24 hours and 7 days. Antimicrobial and antibiofilm activity were evaluated using agar diffusion and biofilm metabolic activity (XTT) assays. Results After 24 hours, all the groups showed similar DTS values (p>0.05), except for RMGIC-3.0%CaGP-1.0%ZnONPs, which showed the highest DTS value (p<0.05). Comparing 24 hours and 7 days, the DTS values of RMGIC-3.0%CaGP-2.0%ZnONPs, RMGIC-3.0%CaGP, and RMGIC-3.0%CaGP-2.0%ZnONPs were similar (p=0.360). After 24 hours, the RMGIC group showed the CS highest value, followed by RMGIC-2.0%ZnONPs (p < 0.05). After 7 days, the RMGIC-3.0%CaGP-1.0%ZnONPs group exhibited the highest CS value, approximately 15% higher than RMGIC (p<0.05). The RMGIC-1.0%ZnONPs group exhibited significantly higher SH at 24 hours (p=0.621). At 7 days, the highest SH value was observed for the RMGIC-3.0%CaGP-1.0%ZnONPs group (p<0.05). Regarding antimicrobial and antibiofilm activity, including results from biofilm metabolism assays, the RMGIC-3.0%CaGP-1.0%ZnONPs group demonstrated the most effective antimicrobial and inhibitory effects (p<0.05). Conclusion This study demonstrated that adding ZnONPs and CaGP to RMGIC enhanced its mechanical and antimicrobial and antibiofilm properties, suggesting enhanced mechanical performance and improved protection against cariogenic biofilms—critical factors for successful restorative treatments. Therefore, the addition of ZnONPs and CaGP is a promising strategy to develop advanced restorative materials that improve clinical outcomes, especially for patients with active dental caries.
Downloads
References
- Machiulskiene V, Campus G, Carvalho JC, Dige I, Ekstrand KR, Jablonski-Momeni A, et al. Terminology of dental caries and dental caries management: consensus report of a workshop organized by ORCA and Cariology Research Group of IADR. Caries Res 2020;54:7-14. doi: 10.1159/000506797.
» https://doi.org/10.1159/000506797
- Xu Y, You Y, Yi L, Wu X, Zhao Y, Yu J, et al. Dental plaque-inspired versatile nanosystem for caries prevention and tooth restoration. Bioact Mater 2022;20:418-33. doi: 10.1016/j.bioactmat.2022.02.007.
» https://doi.org/10.1016/j.bioactmat.2022.02.007
- Van Loveren C. Sugar restriction for caries prevention: amount and frequency. Which is more important? Caries Res. 2019;53:168-75. doi: 10.1159/000495471
» https://doi.org/10.1159/000495471
- Leal SC, Barros BV, Cabral RN, Ferrari JC, Menezes Abreu DM, Ribeiro AP. Dental caries lesions in primary teeth without obvious cavitation: treatment decision-making process. Int J Paediatr Dent. 2019;29:422-8. doi: 10.1111/ipd.12483
» https://doi.org/10.1111/ipd.12483
- Dorri M, Dunne SM, Walsh T, Schwendicke F. Micro-invasive interventions for managing proximal dental decay in primary and permanent teeth. Cochrane Database Syst Rev 2015;2015(11):CD010431. doi: 10.1002/14651858.CD010431.pub2
» https://doi.org/10.1002/14651858.CD010431.pub2
- Urquhart O, Tampi MP, Pilcher L, Slayton RL, Araujo MW, Fontana M, et al. Nonrestorative treatments for caries: systematic review and network meta-analysis. J Dent Res. 2019;98(1):14-26. doi: 10.1177/0022034518800014
» https://doi.org/10.1177/0022034518800014
- Moradi S, Sabbagh S, Timms L, Ravaghi V. Teaching minimally invasive interventions in paediatric dentistry: A cross-sectional survey of dental schools in Iran. BMC Oral Health. 2021;21(1):368. doi: 10.1186/s12903-021-01735-5
» https://doi.org/10.1186/s12903-021-01735-5
- Zandi Karimi A, Rezabeigi E, Drew RA. Glass ionomer cements with enhanced mechanical and remineralizing properties containing 45S5 bioglass-ceramic particles. J Mech Behav Biomed Mater. 2019;97:396-405. doi: 10.1016/j.jmbbm.2019.05.033
» https://doi.org/10.1016/j.jmbbm.2019.05.033
- Zaze AC, Dias AP, Sassaki KT, Delbem AC. The effects of low-fluoride toothpaste supplemented with calcium glycerophosphate on enamel demineralization. Clin Oral Investig. 2014;18(6):1619-24. doi: 10.1007/s00784-013-1140-y
» https://doi.org/10.1007/s00784-013-1140-y
- Emerenciano NG, Delbem AC, Gonçalves FM, Quinteiro JP, Camargo ER, Silva-Sousa YTC, et al. Effect of the association of microparticles and nano-sized ß-calcium glycerophosphate in conventional toothpaste on enamel remineralization: in situ study. J Dent. 2023;138:104719. doi: 10.1016/j.jdent.2023.104719
» https://doi.org/10.1016/j.jdent.2023.104719
- Nunes GP, Delbem AC, Gonçalves FM, Rischka K, Camargo ER, Sousa YT, et al. Biomineralization and remineralizing potential of toothpastes containing nanosized ß-calcium glycerophosphate: an in vitro study. Odontology. 2024;112:1186-96. doi: 10.1007/s10266-024-00927-z
» https://doi.org/10.1007/s10266-024-00927-z
- Santos SS, Delbem AC, Moraes JC, Souza JA, Oliveira LQ, Pedrini D. Resin-modified glass ionomer containing calcium glycerophosphate: physico-mechanical properties and enamel demineralization. J Appl Oral Sci. 2019;27:e20180188. doi: 10.1590/1678-7757-2018-0188.
» https://doi.org/10.1590/1678-7757-2018-0188
- Kheur M, Kantharia N, Lakha T, Kheur S, Al-Haj Husain N, Özcan M. Evaluation of mechanical and adhesion properties of glass ionomer cement incorporating nano-sized hydroxyapatite particles. Odontology. 2020;108:66-73. doi: 10.1007/s10266-019-00447-2
» https://doi.org/10.1007/s10266-019-00447-2
- Fernandes GL, Vanim MM, Delbem AC, Martorano AS, Raucci LM, Oliveira PT, et al. Antibacterial, cytotoxic and mechanical properties of an orthodontic cement with phosphate nano-sized and phosphorylated chitosan: an in vitro study. J Dent 2024;146:105073. doi: 10.1016/j.jdent.2024.105073
» https://doi.org/10.1016/j.jdent.2024.105073
- Chau CF, Wu SH, Yen GC. The development of regulations for food nanotechnology. Trends Food Sci Technol. 2007;18:269-80. doi: 10.1016/j.tifs.2007.01.007
» https://doi.org/10.1016/j.tifs.2007.01.007
- Bastos NA, Bitencourt SB, Martins EA, Souza GM. Review of nano-technology applications in resin-based restorative materials. J Esthet Restor Dent. 2021;33:567-82. doi: 10.1111/jerd.12699
» https://doi.org/10.1111/jerd.12699
- Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823-39. doi: 10.1289/ehp.7688
» https://doi.org/10.1289/ehp.7688
- Pourhajibagher M, Salehi Vaziri A, Takzaree N, Ghorbanzadeh R. Physico-mechanical and antimicrobial properties of an orthodontic adhesive containing cationic curcumin doped zinc oxide nanoparticles subjected to photodynamic therapy. Photodiagnosis Photodyn Ther 2019;25:239-46. doi: 10.1016/j.pdpdt.2019.01.002
- Jowkar Z, Fattah Z, Ghanbarian S, Shafiei F. The effects of silver, zinc oxide, and titanium dioxide nanoparticles used as dentin pretreatments on the microshear bond strength of a conventional glass ionomer cement to dentin. Int J Nanomedicine. 2020;15:4755-62. doi: 10.2147/IJN.S272098.
» https://doi.org/10.2147/IJN.S272098
- Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, et al. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir. 2008;24:4140-4. doi: 10.1021/la703550z
- Azimi R, Shahgholi M, Khandan A. Fabrication and characterization of reinforced glass ionomer cement by zinc oxide and hydroxyapatite nanoparticles. Heliyon. 2024;10:e39063. doi: 10.1016/j.heliyon.2024.e39063
» https://doi.org/10.1016/j.heliyon.2024.e39063
- Ismail SM, Ahmed SM, Abdulrahman AF, Almessiere MA. Characterization of green synthesized of ZnO nanoparticles by using pinus brutia leaves extracts. J Mol Struct. 2023;1280:135063. doi: 10.1016/j.molstruc.2023.135063
» https://doi.org/10.1016/j.molstruc.2023.135063
- Changle Wu, Xueliang Qiao, Jianguo Chen, Hongshui Wang, Fatang Tan, Shitao LiA novel chemical route to prepare ZnO nanoparticles Mater Lett 2006;60:1828-1832. https://doi.org/10.1016/j.matlet.2005.12.061
» https://doi.org/10.1016/j.matlet.2005.12.061
- Garcia PP, Cardia MF, Francisconi RS, Dovigo LN, Spolidório DM, Souza Rastelli AN, et al. Antibacterial activity of glass ionomer cement modified by zinc oxide nanoparticles. Microsc Res Tech. 2017;80:456-61. doi: 10.1002/jemt.22814
- International Organization for Standardization. ISO 9917-2:2017-Dentistry - Water based cements. Part 2: Resin-modified cements. Geneva: ISO; 2017.
- Menezes-Silva R, Oliveira BM, Magalhães AP, Bueno LS, Borges AF, Baesso ML, et al. Correlation between mechanical properties and stabilization time of chemical bonds in glass-ionomer cements. Braz Oral Res. 2020;34:e053. doi: 10.1590/1807-3107bor-2020.vol34.0053
» https://doi.org/10.1590/1807-3107bor-2020.vol34.0053
- Anusavice KJ. Phillips' Science of Dental Materials. Philadelphia: WB Saunders; 1994.
- Fúcio SB, Paula AB, Sardi JC, Duque C, Correr-Sobrinho L, Puppin-Rontani RM. Streptococcus mutans biofilm influences on the antimicrobial properties of glass ionomer cements. Braz Dent J. 2016;17:681-7. doi: 10.1590/0103-6440201600655
» https://doi.org/10.1590/0103-6440201600655
- Cassanho AC, Fernandes AM, Oliveira LD, Carvalho CA, Jorge AO, Koga-Ito CY. In vitro activity of zinc oxide-eugenol and glass ionomer cements on Candida albicans. Braz Oral Res. 2005;19:134-8. doi: 10.1590/s1806-83242005000200011
» https://doi.org/10.1590/s1806-83242005000200011
- Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H. Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng. 2008;106:381-6. doi: 10.1263/jbb.106.381
» https://doi.org/10.1263/jbb.106.381
- Alam BF, Najmi MA, Qasim SB, Almulhim KS, Ali S. A bibliometric analysis of minimally invasive dentistry: a review of the literature from 1994 to 2021. J Prosthet Dent. 2023;130:179-86. doi: 10.1016/j.prosdent.2021.09.023
» https://doi.org/10.1016/j.prosdent.2021.09.023
- Moradpoor H, Safaei M, Mozaffari HR, Sharifi R, Imani MM, Golshah A, et al. An overview of recent progress in dental applications of zinc oxide nanoparticles. RSC Adv. 2021;11:21189-21206. doi: 10.1039/D1RA02792B
» https://doi.org/10.1039/D1RA02792B
- Malekhoseini Z, Rezvani MB, Niakan M, Atai M, Bassir MM, Alizade HS, et al. Effect of zinc oxide nanoparticles on physical and antimicrobial properties of resin-modified glass ionomer cement. Dent Res J (Isfahan). 2021;18:73. doi: 10.4103/1735-3327.326646
» https://doi.org/10.4103/1735-3327.326646
- Shojaei S, Shahgholi M, Karimipour A. The effects of atomic percentage and size of Zinc nanoparticles, and atomic porosity on thermal and mechanical properties of reinforced calcium phosphate cement by molecular dynamics simulation. J Mech Behav Biomed Mater. 2023;141:105785. doi: 10.1016/j.jmbbm.2023.105785
» https://doi.org/10.1016/j.jmbbm.2023.105785
- Burunkova JA, Denisyuk IY, Semina AS. Self-Organization of ZnO Nanoparticles on UV-curable acrylate nanocomposites. J Nanotechnology. 2011:951036. doi: 10.1155/2011/951036
» https://doi.org/10.1155/2011/951036
- Agarwal P, Nayak R, Upadhya NP, Ginjupalli K. Evaluation of properties of glass ionomer cement reinforced with zinc oxide nanoparticles - an in vitro study. Materials Today: Proceedings. 2018;5:16065-72. doi: 10.1016/j.matpr.2018.05.088
» https://doi.org/10.1016/j.matpr.2018.05.088
- Panahandeh N, Torabzadeh H, Aghaee M, Hasani E, Safa S. Effect of incorporation of zinc oxide nanoparticles on mechanical properties of conventional glass ionomer cements. J Conserv Dent. 2018;21(2):130-5. doi: 10.4103/JCD.JCD_170_17
» https://doi.org/10.4103/JCD.JCD_170_17
- Azevedo Santana JA, Navarro MF, Gomes LF, Brighenti FL, Oliveira AB, Fernandes GL, et al. Eur J Oral Sci 2025;133:e70001. doi: 10.1111/eos.70001
» https://doi.org/10.1111/eos.70001
- Benoit DS, Sims KR Jr, Fraser D. Nanoparticles for oral biofilm treatments. ACS Nano. 28;13(5):4869-4875. doi: 10.1021/acsnano.9b02816
» https://doi.org/10.1021/acsnano.9b02816
- Almutairi B, Albahser G, Almeer R, Alyami NM, Almukhlafi H, Yaseen KN, et al. Investigation of cytotoxicity, apoptotic and inflammatory responses of biosynthesized zinc oxide nanoparticles from Ocimum sanctum Linn in human skin keratinocyte (HaCaT) and human lung epithelial (A549) cells. Oxid Med Cell Longev. 2020;2020:1835475. doi: 10.1155/2020/1835475
» https://doi.org/10.1155/2020/1835475
- Czyzowska A, Barbasz A. A review: zinc oxide nanoparticles - friends or enemies? Int J Environ Health Res. 2022;32:885-901. doi: 10.1080/09603123.2020.1805415
» https://doi.org/10.1080/09603123.2020.1805415
- Hasanin MS, El Saied H, Morsy FA, Hassan Abdel Latif Rokbaa H. Green nanocoating-based polysaccharides decorated with ZnONPs doped Egyptian kaolinite for antimicrobial coating paper. Sci Rep. 2023;13:11461. doi: 10.1038/s41598-023-38467-1
» https://doi.org/10.1038/s41598-023-38467-1
- Valtsifer VA, Sivtseva AV, Kondrashova NB, Shamsutdinov AS, Averkina AS, Valtsifer IV, et al. Influence of synthesis conditions on the properties of zinc oxide obtained in the presence of nonionic structure-forming compounds. Nanomaterials (Basel). 2023;13:2537. doi: 10.3390/nano13162537
» https://doi.org/10.3390/nano13162537
- Shirazi M, Qazvini FF, Mohamadrezaie S. Antimicrobial properties of glass-ionomer cement incorporated with zinc oxide nanoparticles against mutans streptococci and lactobacilli under orthodontic bands: an in vivo split-mouth study. Dent Res J (Isfahan). 2023;20:45.
- Miranda ML, Danelon M, Delbem AC, Kopp W, Nunes GP, Brighenti FL. Enhanced anti-biofilm and anti-caries potential of arginine combined with calcium glycerophosphate and fluoride. J Dent. 2024;146:105039. doi: 10.1016/j.jdent.2024.105039
» https://doi.org/10.1016/j.jdent.2024.105039
- Cavazana TP, Hosida TY, Sampaio C, Morais LA, Monteiro DR, Pessan JP, et al. The activity of calcium glycerophosphate and fluoride against cariogenic biofilms of streptococcus mutans and candida albicans formed in vitro. Antibiotics (Basel). 2023;12:422. doi: 10.3390/antibiotics12020422
» https://doi.org/10.3390/antibiotics12020422
- Danelon M, Nunes GP, Sterzenbach T, Hannig C. Enhancing antimicrobial properties of glass ionomer cement through metallic agent reinforcement: a systematic review and meta-analysis. J Dent. 2025;160:105892. doi: 10.1016/j.jdent.2025.105892
» https://doi.org/10.1016/j.jdent.2025.105892
- Emerenciano NG, Delbem AC, Gonçalves FM, Camargo ER, Souza FN Neto, Gorup LF, et al. Effect of nanometric ß-calcium glycerophosphate supplementation in conventional toothpaste on enamel demineralization: an in vitro study. J Mech Behav Biomed Mater 2024;151:106354. doi: 10.1016/j.jmbbm.2023.106354
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Maria Fernanda Cavalcante Meira, Gabriela Leal Peres Fernandes, Andréa Simone Stucchi de Camargo, Leandro Piaggi Ravaro, Marylyn Setsuko Arai, Maria Fidela de Lima Navarro, Fernanda Lourenção Brighenti, Analú Barros de Oliveira, Marcelle Danelon

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.