Selective HDAC4 inhibition by SP1-PTD promotes odontoblast differentiation

Authors

DOI:

https://doi.org/10.1590/

Keywords:

Runt-related transcription factor 2, Histone deacetylase inhibitors, Odontoblast, Dentin sialophosphoprotein, Peptides

Abstract

Background  Vital pulp therapy is limited by incomplete dentin regeneration and dose-limiting toxicities of current histone deacetylase (HDAC) inhibitors. Previous structural studies have identified critical determinants of HDAC4-silencing mediator for retinoid and thyroid hormone receptor (SMRT) protein interactions, providing a rationale for developing selective inhibition strategies. Objective  This study evaluated SMRT peptide 1-protein transduction domain (SP1-PTD), which is a cell-penetrating peptide designed to selectively disrupt HDAC4–SMRT interaction based on structural insights, for promoting odontoblast differentiation with improved safety compared to pan-HDAC inhibitors. Methodology  SP1-PTD comprises an SMRT-derived sequence fused to a PTD, enabling targeted inhibition without affecting HDAC catalytic activity. Effects on odontoblast differentiation were assessed in murine dental papilla cell lines and primary human dental pulp cells using gene expression analysis, functional mineralization assays, and mechanistic studies including chromatin immunoprecipitation and RUNX2 acetylation analysis. Cytotoxicity was directly compared with suberoylanilide hydroxamic acid (SAHA) and trichostatin A. Results  SP1-PTD treatment significantly enhanced odontoblast differentiation with 15.9-fold increase in dentin sialophosphoprotein (Dspp) expression alongside upregulation of RUNX2, osteocalcin, and bone sialoprotein. Functional analysis revealed 1.8-fold increased mineralization capacity. Mechanistically, SP1-PTD increased RUNX2 protein acetylation and histone acetylation at the Dspp promoter, indicating derepression of RUNX2-mediated transcription. Importantly, SP1-PTD did not show cytotoxicity across a wide therapeutic range (0.1-20 μM) and promoted cell proliferation, contrasting sharply with dose-dependent toxicity of pan-HDAC inhibitors. Direct comparison revealed SP1-PTD induced 14-fold increase in Dspp expression while SAHA suppressed it despite comparable Runx2 induction. Conclusions  SP1-PTD represents a first-in-class selective HDAC4 inhibitor that achieves robust pro-differentiation effects with an exceptional safety profile. By specifically targeting HDAC4–SMRT interactions, SP1-PTD overcomes limitations of conventional HDAC inhibitors and offers translational promise for dental regenerative medicine.

Downloads

Download data is not yet available.

References

References

- Karunakaran S, Praveen N, Selvandran KE, Leburu A, Madhuram K, Arunkumar AR. Effectiveness of mineral trioxide aggregate and its modifications in inducing dentin bridge formation during pulp capping: a systematic review. J Conserv Dent Endod. 2025;28(3):222-30. doi:10.4103/JCDE.JCDE_848_24

» https://doi.org/10.4103/JCDE.JCDE_848_24

- Camilleri S, Mcdonald F. Runx2 and dental development. Eur J Oral Sci. 2006;114(5):361-73. doi:10.1111/j.1600-0722.2006.00399.x

» https://doi.org/10.1111/j.1600-0722.2006.00399.x

- Chen S, Rani S, Wu Y, Unterbrink A, Gu TT, Gluhak-Heinrich J, et al. Differential regulation of dentin sialophosphoprotein expression by RUNX2 during odontoblast cytodifferentiation. J Biol Chem. 2005;280(33):29717-29727. doi:10.1074/jbc.M502929200.

» https://doi.org/10.1074/jbc.M502929200

- Ritchie H. The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein. Int J Oral Sci. 2018;10(4):31-6. doi:10.1038/s41368-018-0035-9

» https://doi.org/10.1038/s41368-018-0035-9

- Komori T. Regulation of osteoblast and odontoblast differentiation by RUNX2. Oral Biosci. 2010;52(1):22-5. doi:10.1016/S1349-0079(10)80004-0

» https://doi.org/10.1016/S1349-0079(10)80004-0

- Li S, Kong H, Yao N, Yu Q, Wang P, Lin Y, et al. The role of runt-related transcription factor 2 ( Runx2 ) in the late stage of odontoblast differentiation and dentin formation. Biochem Biophys Res Commun. 2011;410(3):698-704. doi:10.1016/j.bbrc.2011.06.065

» https://doi.org/10.1016/j.bbrc.2011.06.065

- Kim HJ, Kim WJ, Ryoo HM. Post-translational regulations of transcriptional activity of RUNX2. Mol Cells. 2020;43(2):160-7. doi:10.14348/molcells.2019.0247

» https://doi.org/10.14348/molcells.2019.0247

- Peserico A, Simone C. Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol. 2011;2011:371832. doi:10.1155/2011/371832

» https://doi.org/10.1155/2011/371832

- Nakatani T, Chen T, Johnson J, Westendorf JJ, Partridge NC. The deletion of Hdac4 in mouse osteoblasts influences both catabolic and anabolic effects in bone. J Bone Miner Res. 2018;33(9):1362-75. doi:10.1002/jbmr.3422

» https://doi.org/10.1002/jbmr.3422

- Wang Z, Qin G, Zhao TC. HDAC4: mechanism of regulation and biological functions. Epigenomics. 2014;6(1):139-50. doi:10.2217/epi.13.73

» https://doi.org/10.2217/epi.13.73

- Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkühler S. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res. 2007;17(3):195-211. doi:10.1038/sj.cr.7310149

» https://doi.org/10.1038/sj.cr.7310149

- Kwon A, Park HJ, Baek K, Lee HL, Park JC, Woo KM, et al. Suberoylanilide hydroxamic acid enhances odontoblast differentiation. J Dent Res. 2012;91(5):506-12. doi:10.1177/0022034512443367

» https://doi.org/10.1177/0022034512443367

- Jin H, Park JY, Choi H, Choung PH. HDAC inhibitor trichostatin A promotes proliferation and odontoblast differentiation of human dental pulp stem cells. Tissue Eng Part A. 2013;19(5-6):613-24. doi:10.1089/ten.TEA.2012.0163

» https://doi.org/10.1089/ten.TEA.2012.0163

- Duncan HF, Smith AJ, Fleming GJ, Partridge NC, Shimizu E, Moran GP, et al. The histone-deacetylase-inhibitor suberoylanilide hydroxamic acid promotes dental pulp repair mechanisms through modulation of matrix metalloproteinase-13 activity. J Cell Physiol. 2016;231(4):798-816. doi:10.1002/jcp.25128

» https://doi.org/10.1002/jcp.25128

- Liu Z, Chen T, Han Q, Chen M, You J, Fang F, et al. HDAC inhibitor LMK-235 promotes the odontoblast differentiation of dental pulp cells. Mol Med Rep. 2018;17(1):1445-52. doi:10.3892/mmr.2017.8055

» https://doi.org/10.3892/mmr.2017.8055

- Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401(6749):188-93. doi:10.1038/43710

» https://doi.org/10.1038/43710

- Subramanian S, Bates SE, Wright JJ, Espinoza-Delgado I, Piekarz RL. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals. 2010;3(9):2751-67. doi:10.3390/ph3092751

» https://doi.org/10.3390/ph3092751

- Ali A, Bluteau O, Messaoudi K, Palazzo A, Boukour S, Lordier L, et al. Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis. 2013;4(7):e738. doi:10.1038/cddis.2013.260

» https://doi.org/10.1038/cddis.2013.260

- Li W, Fu Y, Wang W. A real-world pharmacovigilance study investigating the toxicities of histone deacetylase inhibitors. Ann Hematol. 2024;103(8):3207-17. doi:10.1007/s00277-024-05691-2

» https://doi.org/10.1007/s00277-024-05691-2

- Park SY, Kim GS, Hwang HJ, Nam TH, Park HS, Song J, et al. Structural basis of the specific interaction of SMRT corepressor with histone deacetylase 4. Nucleic Acids Res. 2018;46(22):11776-88. doi:10.1093/nar/gky926

» https://doi.org/10.1093/nar/gky926

- Sreenath TL, Cho A, MacDougall M, Kulkarni AB. Spatial and temporal activity of the dentin sialophosphoprotein gene promoter: differential regulation in odontoblasts and ameloblasts. Int J Dev Biol. 1999;43(6):509-16.

- Ching HS, Ponnuraj KT, Luddin N, Rahman IA, Nik Abdul Ghani NR. Early odontogenic differentiation of dental pulp stem cells treated with nanohydroxyapatite-silica-glass ionomer cement. Polymers (Basel). 2020;12(9):2125-39. doi: 10.3390/polym12092125

» https://doi.org/10.3390/polym12092125

- Chen Y, Pethö A, Ganapathy A, George A. DPP promotes odontogenic differentiation of DPSCs through NF-?B signaling. Sci Rep. 2021;11(1):22076. doi: 10.1038/s41598-021-01359-3

» https://doi.org/10.1038/s41598-021-01359-3

- Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell. 2007;12(3):377-89. doi:10.1016/j.devcel.2007.02.004.

» https://doi.org/10.1016/j.devcel.2007.02.004

- Dreher SI, Fischer J, Walker T, Diederichs S, Richter W. Significance of MEF2C and RUNX3 regulation for endochondral differentiation of human mesenchymal progenitor cells. Front Cell Dev Biol. 2020;8:81. doi:10.3389/fcell.2020.00081.

» https://doi.org/10.3389/fcell.2020.00081

- Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 1999;18(18):5099-107. doi:10.1093/emboj/18.18.5099

» https://doi.org/10.1093/emboj/18.18.5099

- Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell. 2004;119(4):555-66. doi:10.1016/j.cell.2004.10.024

» https://doi.org/10.1016/j.cell.2004.10.024

Downloads

Published

2025-12-05

Issue

Section

Original Articles

How to Cite

Shin, Y.-K., Moon, J.-S., Son, S.-K., Lee, B.-N., Park, C., Kim, S.-H., Lee, Y. C., & Kim, M.-S. (2025). Selective HDAC4 inhibition by SP1-PTD promotes odontoblast differentiation. Journal of Applied Oral Science, 33, e20250447. https://doi.org/10.1590/