Curcumin inhibits the neuroimmune response mediated by mast cells after pulpitis

Authors

  • Ming Dong Dalian Medical University, School of Stomatology, Dalian https://orcid.org/0009-0001-7376-9350
  • Jing Tang Suqian Stomatological Hospital, Suqian
  • Lu-Jia Li Dalian Medical University, School of Stomatology, Dalian
  • Ting Dai Dalian Medical University, School of Stomatology, Dalian
  • Yi-Yan Zuo Dalian Medical University, School of Stomatology, Dalian
  • Hai-Wei Jin Dalian Medical University, The Affiliated Stomatological Hospital, Dalian https://orcid.org/0009-0001-7376-9350

DOI:

https://doi.org/10.1590/1678-7757-2023-0456

Keywords:

Pulpitis, Mast Cells, Curcumin, Neuroimmune

Abstract

Objective: To analyze the effect of mast cells (MCs) in neurogenic inflammation and the neuroimmune response of trigeminal ganglia (TG) due to pulpitis and detect the regulatory effect of curcumin (Cur) on neuroimmune responses induced by pulpitis. Methodology: Immunohistochemistry, toluidine blue staining (TB), and other methods were used to detect the dynamic changes of MCs, as well as tryptase expression changes and protease activated receptor 2 (PAR2) and calcitonin gene-related peptide (CGRP) levels in the neuroimmune response induced by pulpitis. After administering Cur by intraperitoneal injection, the expression levels of Toll-like receptor 4 (TLR4), CGRP, glial fibrillary acidic protein (GFAP), fractalkine (CX3CL1), Tumor necrosis factor (TNF-α), and other factors were examined in the TG of pulpitis-induced rats. Results: After pulpitis induction, the expression of CGRP-positive neurons and GFAP-positive soluble guanylate cyclase (SGC) in the TG significantly increased. A large number of MCs underwent degranulation. MCs were scattered between the CGRP-positive nerve fibers. MCs showing a typical degranulated state within the TG significantly increased and tryptase-positive MCs surrounded the TG nerve fibers and neurons. After treatment with Cur, the inflammatory response in the periodontal bone induced by pulpitis decreased and promoted early tissue repair. The expression of TNF-α significantly decreased as did degranulation of MCs. In contrast, the expression of CGRP, TLR4-positive neurons, activated SGCs, and PAR2-positive TG neurons significantly decreased. MCs could participate in the neuroimmune response induced by pulpitis by the tryptase signaling pathway. Conclusion: Importantly, Cur inhibited the degranulation of MCs, downregulated the expression of tryptase and PAR2 in the TG, and attenuated the activation response of osteoclasts in the apical periodontium.

Downloads

Download data is not yet available.

References

Cavalla F, Reyes M, Vernal R, Alvarez C, Paredes R, García-Sesnich J, et al. High levels of CXC ligand 12/stromal cell-derived factor 1 in apical lesions of endodontic origin associated with mast cell infiltration. J Endod. 2013;39(10):1234-9. doi: 10.1016/j.joen.2013.06.020

Moura CC, Cunha TC, Crema VC, Dechichi P, Biffi JC. A study on biocompatibility of three endodontic sealers: intensity and duration of tissue irritation. Iran Endod J. 2014;9(2):137-43.

He J, Zhou Q, Jia X, Zhou P, Chen L. Immune-related expression profiles of bisphosphonates-related osteonecrosis of the jaw in multiple myeloma. Pharmazie. 2021;76(4):159-64. doi: 10.1691/ph.2021.01013

Cui L, Chen H, Zhao X. The prognostic significance of immune-related metabolic enzyme MTHFD2 in head and neck squamous cell carcinoma. Diagnostics (Basel). 2020;10(9):689. doi: 10.3390/diagnostics10090689

Fonseca TS, Silva GF, Guerreiro-Tanomaru JM, Sasso-Cerri E, Tanomaru-Filho M, Cerri PS. Mast cells and immunoexpression of FGF-1 and Ki-67 in rat subcutaneous tissue following the implantation of Biodentine and MTA Angelus. Int Endod J. 2019;52(1):54-67. doi: 10.1111/iej.12981

Dinakar G, Ganesh A, Kumar MP, Sabesan M, Narasimhan M, Deivanayagam K. Immunohistochemical quantification of mast cells in inflamed and noninflamed pulp tissue. J Oral Maxillofac Pathol. 2018;22(1):73-7. doi: 10.4103/jomfp.JOMFP_206_16

Mahita VN, Manjunatha BS, Shah R, Astekar M, Purohit S, Kovvuru S. Quantification and localization of mast cells in periapical lesions. Ann Med Health Sci Res. 2015;5(2):115-8. doi: 10.4103/2141-9248.153616

Lauritano D, Mastrangelo F, D’Ovidio C, Ronconi G, Caraffa A, Gallenga CE, et al. Activation of mast cells by neuropeptides: the role of pro-inflammatory and anti-inflammatory cytokines. Int J Mol Sci. 2023;24(5):4811. doi: 10.3390/ijms24054811

Bai R, Li M, Tian Z, Hu Y, An M, Yuan W, et al. Nanoparticulate chitosan-TNF-α-VLPs activate mast cells and enhance adaptive immunity induced by foot-and-mouth disease virus-like particles in mice. Vet Immunol Immunopathol. 2023;264:110662. doi: 10.1016/j.vetimm.2023.110662

Marek-Jozefowicz L, Nedoszytko B, Grochocka M, Żmijewski MA, Czajkowski R, Cubała WJ, et al. Molecular mechanisms of neurogenic inflammation of the Skin. Int J Mol Sci. 2023;24(5):5001. doi: 10.3390/ijms24055001

Balcziak LK, Russo AF. Dural immune cells, CGRP, and migraine. Front Neurol. 2022;13:874193. doi: 10.3389/fneur.2022.874193

Rees TA, Russo AF, O’Carroll SJ, Hay DL, Walker CS. CGRP and the calcitonin receptor are co-expressed in mouse, rat and human trigeminal ganglia neurons. Front Physiol. 2022;13:860037. doi: 10.3389/fphys.2022.860037

Iyengar S, Johnson KW, Ossipov MH, Aurora SK. CGRP and the trigeminal system in migraine. Headache. 2019;59(5):659-81. doi: 10.1111/head.13529

Akasaka R, Furukawa A, Hayashi Y, Hitomi S, Koyama R, Oshima E, et al. PAR2-dependent phosphorylation of TRPV4 at the trigeminal nerve terminals contributes to tongue cancer pain. J Oral Biosci. 2023;65(4):356-64. doi: 10.1016/j.job.2023.10.003

Dinh QT, Cryer A, Dinh S, Trevisani M, Georgiewa P, Chung F, et al. Protease-activated receptor 2 expression in trigeminal neurons innervating the rat nasal mucosa. Neuropeptides. 2005;39(5):461-6. doi: 10.1016/j.npep.2005.07.003

Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The role of curcumin in aging and senescence: molecular mechanisms. Biomed Pharmacother. 2021;134:111119. doi: 10.1016/j.biopha.2020.111119

Kotha RR, Luthria DL. Curcumin: biological, pharmaceutical,nutraceutical, and analytical aspects. Molecules. 2019;24(16):2930. doi: 10.3390/molecules24162930

Matsushita K, Motani R, Sakuta T, Nagaoka S, Matsuyama T, Abeyama K, et al. Lipopolysaccharide enhances the production of vascular endothelial growth factor by human pulp cells in culture. Infect Immun. 1999;67(4):1633-9. doi: 10.1128/IAI.67.4.1633-1639.1999

Alipour M, Fadakar S, Aghazadeh M, Salehi R, Samadi Kafil H, Roshangar L, et al. Synthesis, characterization, and evaluation of curcumin-loaded endodontic reparative material. J Biochem Mol Toxicol. 2021;35(9):e22854. doi: 10.1002/jbt.22854

Bommareddy CS, Ramkumar H, Dakshinamurthy S, Paulindraraj S, Jayakaran TG, Shankar K. Clinical and radiographic evaluation of curcumin as an obturation material in deciduous teeth: a randomized controlled trial. Int J Clin Pediatr Dent. 2022;15(Suppl 1):S35-s9. doi: 10.5005/jp-journals-10005-2128.

Kovanen PT, Bot I. Mast cells in atherosclerotic cardiovascular disease: activators and actions. Eur J Pharmacol. 2017;816:37-46. doi: 10.1016/j.ejphar.2017.10.013

Kaur G, Singh N, Jaggi AS. Mast cells in neuropathic pain: an increasing spectrum of their involvement in pathophysiology. Rev Neurosci. 2017;28(7):759-66. doi: 10.1515/revneuro-2017-0007

Cruse G, Bradding P. Mast cells in airway diseases and interstitial lung disease. Eur J Pharmacol. 2016;778:125-38. doi: 10.1016/j.ejphar.2015.04.046

DeBruin EJ, Gold M, Lo BC, Snyder K, Cait A, Lasic N, et al. Mast cells in human health and disease. Methods Mol Biol. 2015;1220:93-119. doi: 10.1007/978-1-4939-1568-2_7

Khalil WA, Abunasef SK. Can mineral trioxide aggregate and nanoparticulate endosequence root repair material produce injurious effects to rat subcutaneous tissues? J Endod. 2015;41(7):1151-6. doi: 10.1016/j.joen.2015.02.034

Kamal R, Dahiya P, Goyal N, Kumar M, Sharma N, Saini HR. Mast cells and oral pathologies: a review. J Nat Sci Biol Med. 2015;6(1):35-9. doi: 10.4103/0976-9668.149075

Kritikou E, Kuiper J, Kovanen PT, Bot I. The impact of mast cells on cardiovascular diseases. Eur J Pharmacol. 2016;778:103-15. doi: 10.1016/j.ejphar.2015.04.050

Reber LL, Frossard N. Targeting mast cells in inflammatory diseases. Pharmacol Ther. 2014;142(3):416-35. doi: 10.1016/j.pharmthera.2014.01.004

Nigrovic PA, Lee DM. Mast cells in inflammatory arthritis. Arthritis Res Ther. 2005;7(1):1-11. doi: 10.1186/ar1446

Li N, Guo Y, Gong Y, Zhang Y, Fan W, Yao K, et al. The anti-inflammatory actions and mechanisms of acupuncture from acupoint to target organs via neuro-immune regulation. J Inflamm Res. 2021;14:7191-224. doi: 10.2147/JIR.S341581

Jia L, Lee S, Tierney JA, Elmquist JK, Burton MD, Gautron L. TLR4 Signaling selectively and directly promotes cgrp release from vagal afferents in the mouse. eNeuro. 2021;8(1):ENEURO.0254-20.2020. doi: 10.1523/ENEURO.0254-20.2020

Vindiš B, Gašperšič R, Skalerič U, Kovačič U. Toll-like receptor 4 expression in trigeminal neurons is increased during ligature-induced periodontitis in rats. J Periodontol. 2014;85(1):170-7. doi: 10.1902/jop.2013.130039

Moore ER, Michot B, Erdogan O, Ba A, Gibbs JL, Yang Y. CGRP and Shh mediate the dental pulp cell response to neuron stimulation. J Dent Res. 2022;101(9):1119-26. doi: 10.1177/00220345221086858

Jia T, Rao J, Zou L, Zhao S, Yi Z, Wu B, et al. Nanoparticle-encapsulated curcumin inhibits diabetic neuropathic pain involving the P2Y12 receptor in the dorsal root ganglia. Front Neurosci. 2018;11:755. doi: 10.3389/fnins.2017.00755

Lv Y, Zhao Y, Wang X, Chen N, Mao F, Teng Y, et al. Increased intratumoral mast cells foster immune suppression and gastric cancer progression through TNF-α-PD-L1 pathway. J Immunother Cancer. 2019;7(1):54. doi: 10.1186/s40425-019-0530-3

Conti P, Lauritano D, Caraffa A, Gallenga CE, Carinci F, Ronconi G, et al. Mast cells mediate rheumatoid arthritis-inhibitory role of IL-37. Crit Rev Immunol. 2019;39(4):267-74. doi: 10.1615/CritRevImmunol.2020033176

Downloads

Published

2024-09-16 — Updated on 2024-10-01

Versions

Issue

Section

Original Articles

How to Cite

Dong, M., Tang, J., Li, L.-J., Dai, T., Zuo, Y.-Y., & Jin, H.-W. (2024). Curcumin inhibits the neuroimmune response mediated by mast cells after pulpitis. Journal of Applied Oral Science, 32, e20230456. https://doi.org/10.1590/1678-7757-2023-0456 (Original work published 2024)