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INTRODUCTON

Investigation of asymmetrical fluctuations
has been rigourously studied in the life sciences1-5.
In general, Detrended Fluctuation Analysis (DFA)6

enforces data of interpeak intervals to
characterize irregular and often chaotic variation.
This is widely accepted for Electrocardiograph
(ECG) traces where the RR interval of the PQRST-
signature is appropriate. Nonetheless such
algorithms may be too computationally processor
intensive so they cannot be employed online; and
are not effective on short time-series. Gathering
data for analysis usually requires ambulatory
monitoring for days or weeks7.

Spectral entropy8-11 and; later the new
spectral techniques based on ‘chaotic globals’12

attempt to overcome this disadvantage; avoiding
the sparse data hazard. These computations are
useful in monitoring surgical patients under
anaesthesia13; or unable to communicate distress
as in sleep apnea14 or dyspnea15,16. Assessment
of chaotic states in this way is both quicker for
diagnostic purposes and more efficient using less
physician time; which is expensive.

With regards to dietary considerations,
obesity is a major problem. Consequences include
arterial hypertension, atherosclerosis, diabetes,
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sleep apnea and depression; amongst others17-20.
Studies have shown that obesity produces
abnormalities of the autonomic nervous system
in children and young adults21,22. Autonomic
behavior is assessed through Heart Rate
Variability (HRV) a simple, non-invasive tool for
the detection and study of cardiac irregularities
in many conditions.

Obesity is simply defined as a function of
body mass and height. However the perceived
benefit for testing the correlation with HRV is that
it can provide an indicator of the risk of cardiac
failure and other dynamical diseases23 in such
children. HRV analysis using non-linear dynamical
techniques is becoming an important area of
research. There is evidence that mechanisms
involved in cardiovascular regulation interact with
each other in a complex and chaotic manner.
Usually, changes in the HRV patterns are an
indicator of health status. High HRV is a signal of
good adaptation and characterize a healthy
person with efficient autonomic mechanisms.
Whilst lower HRV is frequently an indicator of
abnormal and insufficient adaptation of the
autonomic nervous system; causing the subject
low physiological function. The aim of this is to
statistically determine which data is from normals
and which obese children. Since the time-series
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are short we must apply chaotic global
parameters; which rely on spectrally determined
values; rather than temporal interpeak
separations.

METHODS

Population
A total of 94 subjects of mixed gender

between eight and twelve years of age were
divided into two groups based on body mass
index: obese and non-obese. Obesity was
defined on body mass index established for age
and gender. The number of obese and normal
children was equal.

Children reported using drugs or diagnosed
diseases were not included in this study. The
volunteers and parents/guardians were duly
informed as to the procedures and objectives of
the study and, after agreeing to participate, the
parents/guardians signed terms of informed
consent. All procedures received approval from
the ethics committee of the Faculdade de Ciências
e Tecnologia — FCT/UNESP (Process no 187/
2007).

Experimental protocol
Prior to beginning the experimental

procedure, information was collected on age,
gender, weight, height and body mass index. The
anthropometric measurements were performed.
Weight was determined using a digital scale
(Filizzola PL 150, Filizzola Ltda., Brazil) with a
precision of 0.1 kg, with the children barefoot and
wearing light-weight clothing. Height was
determined using a stadiometer with a precision
of 0.1 cm. The data collection was carried out in a
room with the temperature between 21ºC and
23ºC and relative humidity between 40% and
60%. Data were collected between 14hr and 17hr
to minimize the interference of circadian rhythm.

After the initial evaluation, all procedures
necessary for the data collection were explained
on an individual basis and the children were
instructed to remain at rest and avoid talking
during the collection. The heart monitor belt was
then placed over the thorax, aligned with the
distal third of the sternum and the Polar S810i
heart rate receiver (Polar Electro, Finland) was
placed on the wrist. The equipment was previously
validated for monitoring beat-by-beat heart rate
and the use of these data for HRV analysis in
children and adults. The children were placed in
the dorsal decubitus position and remained at rest
with spontaneous breathing for 20 minutes. After
the collection, the child was discharged. The HRV
behavior pattern was recorded beat-by-beat
throughout the monitoring process at a sampling
rate of 1000 Hz. Following digital filtering
complemented with manual filtering for the
elimination of premature ectopic beats and
artifacts, a minimum of 1000 consecutive interbeat
intervals were used for the data analysis. Only
series with more than 95% sinus rhythm was
included in the study.

Chaotic Global Parameters & Statistical
Analysis

Here the time-series are short; we must
consider the spectral properties. Typically,
algorithms applied to power spectra converge
faster than computed on inter-peak temporal
separations. Accuracy is enhanced if there is any
fine detailed structure when we use Welch method
24 for spectral entropy or spectral Detrended
Fluctuation Analysis (sDFA). The spectral Multi-
Taper Method (sMTM) applies the multi-taper
spectrum25. The following sections 3.1 to 3.3,
summarize the three chaotic global parameters
based on power spectra. For further detailed
treatment, please refer to Garner and Ling12.

Spectral Entropy
Spectral entropy11,26,27 is a function of

Shannon entropy28,29. It provides us with a value
that characterizes the probability that different
power spectral outputs of length N occur, where,
p i  is the probability of being in state i. Spectral
disorder is a function of the irregularity of
amplitude and frequency of the peaks in power
spectra.

We calculate the power spectrum by
Welch’s method24 (See Figure 1); setting the
Welch’s method parameters at: (i) sampling
frequency of 2Hz, (ii) zero overlap (iii) a Hamming
window with FFT length of 256, and (iv) no
detrending. This output is then manipulated so
that the sum of the magnitude is equal to unity;
giving a normalized power spectrum. From here
we evaluate Shannon entropy of the frequencies
from normalized power spectra. Therefore, the
x-axis is frequency and the y-axis is amplitude in
the two-dimensional sense.

We then calculate an intermediate
parameter which is the median Shannon entropy
of the three different power spectra using the
Welch power spectra under three test conditions:
(i) a perfect sine wave (ii) uniformly distributed
random variables, and finally (iii) the experimental
oscillating signal.

These values are then normalized
mathematically so that the sine wave gives a
value of zero, uniformly distributed random
variables give unity, and the experimental signal
between zero and unity. It is this final value that
corresponds to spectral entropy.

Spectral Detrended Fluctuation Analysis
DFA6,30 can be applied to datasets where

statistics such as mean, variance and
autocorrelation vary with time. The difference with
the sDFA12 algorithm is that the DFA is applied to
the frequency rather than time on the horizontal
axis (See Figure 1). Regarding DFA according to
Donaldson31 the time-series of length k was
integrated as follows.

The integrated time-series was then divided
into equally sized and non overlapping windows
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of length w. A linear regression line was fitted
through the data in each window and the time-
series locally detrended by subtracting the
regression line from the data. The root mean
square fluctuation F(w) of the integrated and
detrended time-series was then used to calculate
values of w.

The scaling exponent obtained as the slope
of the straight line fit to F(w) against w on a log-
log plot as:

To obtain sDFA we calculate the spectral
adaptation in exactly the same way as for spectral
entropy using a Welch power spectrum with the
same settings; but DFA rather than Shannon
entropy is the algorithm applied. Applying DFA in
this way reduces errors which could be introduced
by a fluctuating scaling exponent during the time-
series of the dataset.

Spectral Multi-Taper Method
sMTM12 is founded on the increased intensity

of broadband noise in power spectra generated
by irregular and chaotic signals. Multi-Taper
Method, (MTM)25,32 provides estimates of both line
components and the continuous background of the
spectrum. MTM exploits the property that these
adaptive orthogonally shaped windowed power
spectra are extremely accurate. These optimal
tapers belong to a family of spectral functions
termed Discrete Prolate Spheroidal Sequences
(DPSS)33. MTM spectral estimation reduces spectral
leakage and other inaccuracies compared to the
single windowed non-adaptive techniques.

We set the parameters for MTM at: (i)
sampling frequency of 1Hz (ii) time bandwidth for
the DPSS is set to 3 (iii) FFT length of 256 (iv)
Thomson’s adaptive nonlinear combination
method to combine individual spectral estimates.
sMTM is the area between the MTM power
spectrum and the baseline (See Figure 2).

Statistical Analysis
The parameter [CFPx] is referred to as

Chaotic Forward Parameter where the x
corresponds to obese and normal datasets.
There are seven different combinations of three
chaotic global parameters. Since sDFA responds
to chaos in the opposite way to the others we
subtract its value from unity when applying here.
All three chaotic global values have equal
weighting.

RESULTS

Mean Variation & Significances
Parametric statistics generally assume the

data are normaily distributed, hence the use of
the mean as a measure of central tendancy. If
we cannot normalize the data we should not
compare means. To test our assumptions of
normality we apply the Anderson-Darling34 and
Ryan-Joiner35 tests of normality.

The Anderson–Darling test for normality
applies an empirical cumulative distribution
function, whereas the Ryan-Joiner test is a

F(w)αwα.

Figure 2: A Multi-Taper Method (MTM) power spectrum
of the ECG RR intervals of an obese patient.. sMTM is
the area beneath the power spectrum. The MTM has
the advantage that it has higher resolution than the
Welch, but at significant computational expense. We
set parameters for MTM power spectrum at: ( i)
sampling frequency of 1Hz (ii) time bandwidth for the
DPSS set at 3. (iii) FFT length of 256 (iv) Thomson’s
adaptive nonlinear combination method to combine
individual spectral estimates

y (k) =     (x(i) - x ).Σ
k

i=1

Figure 1: A Welch method power spectrum of an ECG’s
RR interval of an obese patient. Shannon Entropy and
DFA are applied retropectively to the power spectrum
above to derive spectral entropy and sDFA. We set
the subsequent parameters for the Welch power
spectrum to: (i) sampling frequency of 2Hz, (ii) zero
overlap (iii) a Hamming window with FFT length of 256,
and (iv) no detrending

Normalized Frequency (xπ rad/sample)

Normalized Frequency (xπ rad/sample)
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correlation based test. In the majority of cases
the p < 0.01; with only a few at the level
p > 0.1 for both tests and so we cannot say
that the observat ions fo l low a normal
distribution. Therefore we have a probability
plot of mainly non-normal data and so we must
apply the Kruskal-Wallis36 test of significance
(non-parametric) as the ANOVA37 (parametric)

is  unre l iab le for  strong departures f rom
normality.

The results illustrate that there is a wide
variation in both the mean values for both obese
and non-obese (See Table 1). The test of
significance applied is the Kruskal-Wallis test. The
algorithm computes a significant statistical result
for five of the seven combinations (p < 0.05).

Table 1: The table below shows the mean values and standard deviation of the Chaos Forward
Parameters [1 to 7] for the normal and obese subjects RR intervals. The number of RR intervals is
1000. Kruskal-Wallis tests of significance was applied to results

Mean Normal Standard Mean Obese Standard
[CFP] (n=47) Deviation (n=47) Deviation P-value

Normal Obese

1 0.7652 0.1097 0.8165 0.1411 0.0543

2 0.5955 0.0967 0.6017 0.0889 0.5809

3 0.6382 0.1127 0.6533 0.1235 0.9909

4 0.6130 0.1899 0.7169 0.2192 0.0144

5 0.3932 0.1531 0.4685 0.1599 0.0111

6 0.4657 0.1306 0.5389 0.1632 0.0159

7 0.3829 0.2011 0.2975 0.1938 0.0099

These are all combinations except 2 and 3. So
increased statistical significance is achieved by
[CFP]; in five combinations. Whilst, Algorithm 7 is
grouped as statistically significant it is different
in the sense that the [CFP] falls in magnitude.

Principal Component Analysis
Principal Component Analysis (PCA)38 can be

applied here (See Table 2). We have the values
of [CFP] for seven groups for 47 subjects who
are obese; hence a grid of 7 by 47 to be assessed.
The First Principal Component has a variance

(eigenvalue) of 4.3786 and accounts for 62.6%
of the total variance.

The Second Principal Component has an
eigenvalue of 2.5796 accounting for 99.4% of total
variance. Therefore we can assume that most
variance is acheived in the first two components.
Only [CFPx 2 & 3] are not significantly different
when tested by Kruskal-Wallis test (p < 0.05).

[CFPx1] has the First Principal Component
(0.393) and the Second Principal Component
(-0.353); whereas, [CFPx4] has the First Principal
Component (0.471) and the Second Principal
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Component (0.107). [CFPx5] has the First Principal
Component (0.437) and the Second Principal
Component (0.250); [CFPx6] has the First Principal
Component (0.476) and the Second Principal
Component (0.019). [CFPx7] has the First Principal
Component (-0.392) and the Second Principal
Component (-0.356).

[CFPx7] performs best on the PCA analysis
alone, however it has the higher standard
deviations when compared to [CFPx1]; this must
be taken into account. [CFPx4, 5 & 6] have very
influential first components but lack magitude on
the second component. Only the first two
components need be considered due to the steep
scree plot.

So, [CFPx1] which applies all three chaotic
globals techniques is the best overall combination
with regards to influencing the correct outcome.
It is the most robust statistically when compared
by p-value, PCA and standard deviations.

DISCUSSION

We have derived five functions which can
take short-times series of HRV and deduce which
time-series is from an obese patient and which
from the normal subjects. There is a high level of
significance for all five algorithms (p < 0.05). Since
we are applying this novel function to the shorter
time-series it should be possible to determine
which time-series are obese, and which normal
— more rapidly with regards to time and data
duration.

The mathematical analysis is undertaken
such that it is not only appropriate for online
analysis but also retrospectively in the laboratory
and clinical setting. Here, the analysis is done
retrospectively — [CFP] is calculated for normal
and obese subjects.

The first algorithm which applies all three
chaotic global parameters is suggested as the
most robust algorithm. Referring to Garner and
Ling12; which applies the models — Duffing,
Brusselator and Lorenz for the purposes of
optimization. Here, [CTF] a variant of [CFPx] is

Table 2: The table below is the Principal Component Analysis for [CFP] for seven groups for 47 subjects
who are obese children.PC1 represents the First Principal Component, PC2 the Second; until the
seventh component PC7

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7

CFP1 0.393 -0.353 0.095 -0.590 0.292 -0.396 -0.348

CFP2 0.085 -0.607 0.665 0.247 0.005 0.143 0.316

CFP3 0.212 -0.553 -0.552 0.398 -0.120 0.206 -0.359

CFP4 0.471 0.107 -0.008 -0.438 -0.300 0.683 0.134

CFP5 0.437 0.250 0.273 0.280 -0.622 -0.382 -0.248

CFP6 0.476 0.019 -0.359 0.127 0.159 -0.322 0.706

CFP7 -0.392 -0.356 -0.201 -0.382 -0.631 -0.252 0.268

the most dependable objective function when
tested by PCA.

In the current study, 99.4 % of influence is
achieved by the first two Principal Components
and the ones which have tested for significance
by statistical techniques respond sympathetically.
The [CFP] with all three chaotic globals applied
testing as most influencial algorithm. [CFPx7] is
excluded on the basis of high standard deviation
for both sets of data. Increased statistical
significance is achieved by [CFP x 4, 5 & 6].
However these combinations are less appropriate
when assessed by PCA.

The Autonomic Nervous System (ANS) has
an important role in regulation of physiological
mechanisms; such as cardiac and metabolic
systems. Reduction in sympathetic and
parasympathetic activity can lead to obesity39. The
common mechanisms of physiologically causing
paediatric obesity are: insulin resistance,
dyslipidaemia, hypertension, metabolic syndrome,
diabetes and cardiac hypertrophy40. The pattern
of ANS dysfunction39 raises the likelihood that
obesity may damage the peripheral autonomic
nerves resembling  non-obese diabetic children.

Further difficulty that childhood obesity41-43

can then be associated with are: pulmonary
disorders such as sleep apnea and reactive
airway disease, blood coagulation abnormalities,
endocrine and cardiovascular disorders,
arteriosclerosis and cardiac arrhythmias.

The assessment of the autonomic function
is most commonly undertaken by HRV since it is
reliable and cheap. Nevertheless there are two
other methods namely Sympathetic Skin
Response (SSR) and Quantiative Pupillography39.
SSR is not so effective in children and lacks
sensitivity, Quantiative Pupillography is more
accurate but expensive.

Further physiological and clinical study
could be centred around physical activity and
duration of obesity on the ANS dysfunction on
obese children. Additional non-invasive study
could involve modification of the Welch power
spectra for the sDFA and spectral entropy. The
sampling frequency; and extent of overlap and
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detrending could be adjusted. A higher spectral
resolution technique such as the MTM may prove
beneficial. The DPSS of the MTM could be
adjusted to optimize the final level of significance
by its p-value. In addition the weighting of the
three chaotic global parameters could be
adjusted since here they have only equal
weightings of unity. Also, correlation between
PCA for[CFP]; and time and frequency indices
could be performed.

It is noted that [CFP] responds in the
opposite manner to DFA in Vanderlei 44.This is to
be expected. Five results are significant and all
but one, of the values represent an increase in
[CFP]. This would suggest that the HRV has
become more chaotic. This is contrary to current
theories in complexities in physiology and
diseased states. A suggestion is that children
respond differently to adults when obese with
regards to autonomic function and HRV.

CONCLUSION

Standard data collection technques applied
to either DFA or Shannon entropy would be too
time consuming. Here using the five significant
[CFP] the analysis is more efficient and faster.It
is the correlation with HRV that make this
technique worthwhile as an indicator of percieved
risk from such dynamical diseases. It is recognised
that this increase in [CFP] is unusual as until now
diseased states are represented by decreases
in disorder, especially of the RR interval.
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