Assessment of fetal development by HRV and chaotic global techniques

Autores

  • David M. Garner Oxford Brookes University, Gipsy Lane, Oxford
  • Peter van Leeuwen University Witten/Herdecke,
  • Dietrich Grönemeyer
  • Shakeeb Moosavi Faculty of Health and Life Sciences, Oxford Brookes University

DOI:

https://doi.org/10.7322/jhgd.119258

Palavras-chave:

entropy, heart rate variability, complexity, chaos, power spectra.

Resumo

Introduction: Fetal heart rate and its variability during the course of gestation have been extensively researched. The overall reduction in heart rate and increase in fetal HRV is associated with fetal growth and the increase in neural integration. The increased complexity of the demands on the cardiovascular system leads to more variation in the temporal course of the heart rate which has been shown to be refl ected in measures of complexity. The aim of this work was to investigate novel complexity measures with respect to their ability to quantify changes over gestational age in individual fetuses consistently and in a stable manner. Methods: We examined 215 fetal magnetocardiograms (FMCG), each of 5 min duration, in 11 fetuses during the second and third trimesters (at least 10 data sets per fetus). From the FMCG we determined the  etal RR beat durations. For each 5 min time-series of RR intervals we then calculated Shannon entropy, high spectral entropy, high spectral Detrended Fluctuation Analysis, spec ral Multi-Taper Method as well as the standard deviation and two commonly used complexity measures: Approximate Entropy and Sample Entropy. For each subject and HRV measure, we performed regression analysis with respect to ges tational age. The coeffi cient of determination R2 was used to es timate ‘goodness-of-fi t’, the slope of the regression indicated the strength of the individual dependency on gestational age. Results: We found that the new complexity measures do not outperform ApEn. Conclusion: This study has now rejected the hypothesis that the spectral complexity measures outperform those applied previously.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Van Leeuwen P, Cysarz D, Edelhauser F, Gronemeyer D. Heart rate variability in the individual fetus. Auton Neurosc. 2013;178(1-2):24-8. DOI: http://dx.doi.org/10.1016/j.autneu.2013.01.005

Van Leeuwen P, Lange S, Bettermann H, Gronemeyer D, Hatzmann W. Fetal heart rate variability and complexity in the course of pregnancy. Early Hum Dev. 1999;54(3):259-69. DOI: http://dx.doi.org/10.1016/S0378-3782(98)00102-9

Gieraltowski J, Hoyer D, Tetschke F, Nowack S, Schneider U, Zebrowski J. Development of multiscale complexity and multifractality of fetal heart rate variability. Auton Neurosc. 2013;178(1-2):29-36. DOI: http://dx.doi.org/10.1016/j.autneu.2013.01.009

Hoyer D, Nowack S, Bauer S, Tetschke F, Rudolph A, Wallwitz U, et al. Fetal development of complex autonomic control evaluated from multiscale heart rate patterns. Am J Physiol Regul Integr Comp Physiol. 2013;304(5):R383-92. DOI: http://dx.doi.org/10.1152/ajpregu.00120.2012

Billman GE. Heart rate variability - a historical perspective. Front Physiol. 2011;2:86. DOI: http://dx.doi.org/10.3389/fphys.2011.00086

Schneider U, Schleussner E, Fiedler A, Jaekel S, Liehr M, Haueisen J, et al. Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system. Physiol Meas. 2009;30(2):215-26. DOI: http://dx.doi.org/10.1088/0967-3334/30/2/008

Romanini C, Rizzo G. Fetal behaviour in normal and compromised fetuses. An overview. Early Hum Dev. 1995;43(2):117-31.

Lange S, Van Leeuwen P, Schneider U, Frank B, Hoyer D, Geue D, et al. Heart rate features in fetal behavioural states. Early Hum Dev. 2009;85(2):131-5. DOI: http://dx.doi.org/10.1016/j.earlhumdev.2008.07.004

Gonçalves H, Bernardes J, Rocha AP, Ayres-de-Campos D. Linear and nonlinear analysis of heart rate patterns associated with fetal behavioral states in the antepartum period. Early Hum Dev. 2007;83(9):585-91. DOI: http://dx.doi.org/10.1016/j.earlhumdev.2006.12.006

Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify? Am J Physiol. 1994;266(4 Pt 2):H1643-56.

Barreto GS, Vanderlei FM, Vanderlei LCM, Garner DM. Risk appraisal by novel chaotic globals to HRV in subjects with malnutrition. J Hum Growth Dev. 2014;24(3):243-8. DOI: http://dx.doi.org/10.7322/jhgd.88900

Garner DM, Ling BWK. Measuring and locating zones of chaos and irregularity. J Syst Sci Complex. 2014;27(3):494-506. DOI: http://dx.doi.org/10.1007/s11424-014-2197-7

Shannon CE. A mathematical theory of communication. ACM Sigmobile Mobile Comp Communic Rev. 2001;5(1):3-55. DOI: http://dx.doi.org/10.1145/584091.584093

Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1):82-7. DOI: http://dx.doi.org/10.1063/1.166141

Antonio AMS, Garner DM, Cardoso MA, Abreu LC, Raimundo RD, Navega MT, et al. Behaviour of globally chaotic parameters of heart rate variability following a protocol of exercise with flexible pole. Russ J Cardiol. 2015;4(120):24-8. DOI: http://dx.doi.org/10.15829/1560-4071-2015-04-22-26

Souza NM, Vanderlei LCM, Garner DM. Risk evaluation of diabetes mellitus by relation of chaotic globals to HRV. Complexity. 2015;20(3):84-92. DOI: http://dx.doi.org/10.1002/cplx.21508

Bernardo AFB, Vanderlei LCM, Garner DM. HRV analysis: a clinical and diagnostic tool in chronic obstructive pulmonary disease. Int Schol Res Notices. 2014;2014:6. DOI: http://dx.doi.org/10.1155/2014/673232

Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039-49.

Camm AJ, Malik M, Bigger JT, Breithardt G, Cerutti S, Cohen RJ, et al. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043-65. DOI: http://dx.doi.org/10.1161/01.CIR.93.5.1043

Zyczkowski K. Renyi extrapolation of Shannon entropy. Open Syst Inf Dyn. 2003;10(3):297-310. DOI: http://dx.doi.org/10.1023/A:1025128024427

Ryabko B, Reznikova Z. Using Shannon entropy and Kolmogorov complexity to study the communicative system and cognitive capacities in ants. Complexity. 1996;2(2):37-42. DOI: 10.1002/(SICI)1099-0526(199611/12)

Ho MW. The rainbow and the worm: The physics of organisms. 3rd ed. Singapore: World scientific; 2008.

Vanderlei FM, Vanderlei LCM, Garner DM. Chaotic global parameters correlation with heart rate variability in obese children. J Hum Growth Dev. 2014;24(1):24-30. DOI: http://dx.doi.org/10.7322/jhgd.72041

Percival DB, Walden AT. Spectral analysis for physical applications: multitaper and conventional univariate techniques. New York: Cambridge University Press; 1993.

Alkan A, Kiymik MK. Comparison of AR and Welch methods in epileptic seizure detection. J Med Sys. 2006;30(6):413-9. DOI: http://dx.doi.org/10.1007/s10916-005-9001-0

Ghil M. The SSA-MTM Toolkit: applications to analysis and prediction of time series. Proc SPIE. 1997;3165:216-30. DOI: http://dx.doi.org/10.1117/12.279594

Slepian D. Prolate spheroidal wave functions, Fourier analysis and uncertainty, V: the discrete case. Bell Syst Tech J. 1978;57(5):1371-430. DOI: http://dx.doi.org/10.1002/j.1538-7305.1978.tb02104.x

Gould SH. Variational methods for eigenvalue problems: an introduction to the methods of Rayleigh, Ritz, Weinstein, and Aronszajn. Courier Dover Publications; 1995.

Johnson R, Shore J. Which is the better entropy expression for speech processing:-S log S or log S? IEEE Transac Acoustics, Speech, Signal Proc. 1984;32(1):129-37. DOI: http://dx.doi.org/10.1109/TASSP.1984.1164296

Peng CK, Havlin S, Hausdorff JM, Mietus JE, Stanley HE, Goldberger AL. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J Electrocardiol. 1995;28(Suppl. 1):59-65. DOI: http://dx.doi.org/10.1016/S0022-0736(95)80017-4

Donaldson GC, Seemungal TA, Hurst JR, Wedzicha JA. Detrended fluctuation analysis of peak expiratory flow and exacerbation frequency in COPD. Eur Respir J. 2012;40(5):1123-9. DOI: http://dx.doi.org/10.1183/09031936.00180811

Mann ME, Lees JM. Robust estimation of background noise and signal detection in climatic time series. Climatic Change. 1996;33(3):409-45. DOI: http://dx.doi.org/10.1007/BF00142586

Thomson DJ. Spectrum estimation and harmonic analysis. Proc IEEE. 1982;70(9):1055-96. DOI: http://dx.doi.org/10.1109/PROC.1982.12433

Batista AM, Viana RL. Kolmogorov-Sinai entropy for locally coupled piecewise linear maps. Physica A: Stat Mechan Applicat. 2002;308(1-4):125-34. DOI: http://dx.doi.org/10.1016/S0378-4371(02)00579-4

Hornero R, Abasolo D, Escudero J, Gomez C. Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer's disease. Philos Trans A Math Phys Eng Sci. 2009;367(1887):317-36. DOI: http://dx.doi.org/10.1098/rsta.2008.0197

Richman JS, Lake DE, Moorman JR. Sample entropy. Methods Enzymol. 2004;384:172-84. DOI: http://dx.doi.org/10.1016/S0076-6879(04)84011-4

Silva LEV, LO Murta Jr. Evaluation of physiologic complexity in time series using generalized sample entropy and surrogate data analysis. Chaos. 2012;22(4):043105. DOI: http://dx.doi.org/10.1063/1.4758815

Ramdani S, Bouchara F, Lagarde J. Influence of noise on the sample entropy algorithm. Chaos. 2009;19(1):013123. DOI: http://dx.doi.org/10.1063/1.3081406

Porta A, Casali KR, Casali AG, Gnecchi-Ruscone T, Tobaldini E, Montano N, et al. Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am J Physiol Regul Integr Comp Physiol. 2008;295(2):R550-7. DOI: http://dx.doi.org/10.1152/ajpregu.00129.2008

Van Leeuwen P, Geue D, Lange S, Hatzmann W, Grönemeyer D. Changes in the frequency power spectrum of fetal heart rate in the course of pregnancy. Prenat Diagn. 2003;23(11):909-16. DOI: http://dx.doi.org/10.1002/pd.723

Lange S, Van Leeuwen P, Geue D, Hatzmann W, Gronemeyer D. Influence of gestational age, heart rate, gender and time of day on fetal heart rate variability. Med Biol Eng Comput. 2005;43(4):481-6. DOI: http://dx.doi.org/10.1007/BF02344729

Van Leeuwen P, Lange S, Geue D, Gronemeyer D. Heart rate variability in the fetus: a comparison of measures. Biomed Tech (Berl). 2007;52(1):61-5. DOI: http://dx.doi.org/10.1515/BMT.2007.012

Moraes ER, Murta LO, Baffa O, Wakai RT, Comani S. Linear and nonlinear measures of fetal heart rate patterns evaluated on very short fetal magnetocardiograms. Physiol Meas. 2012;33(10):1563-83. DOI: http://dx.doi.org/10.1088/0967-3334/33/10/1563

van Laar J, Peters C, Vullings R, Houterman S, Oei SG. Power spectrum analysis of fetal heart rate variability at near term and post term gestation during active sleep and quiet sleep. Early Hum Dev. 2009;85(12):795-8. DOI: http://dx.doi.org/10.1016/j.earlhumdev.2009.11.001

Anier A, Lipping T, Melto S, Hovilehto S. Higuchi fractal dimension and spectral entropy as measures of depth of sedation in intensive care unit. Conf ProcI EEE Eng Med Biol Soc. 2004;1:526-9. DOI: http://dx.doi.org/10.1109/IEMBS.2004.1403210

Vanderlei FM, Vanderlei LCM, Garner DM. Heart rate dynamics by novel chaotic globals to HRV in obese youths. J Hum Growth Dev. 2015;25(1):82-8. DOI: http://dx.doi.org/10.7322/jhgd.96772

Wajnsztejn R, De Carvalho TD, Garner DM, Vanderlei LCM, Godoy MF, Raimundo RD, et al. Heart rate variability analysis by chaotic global techniques in children with attention deficit hyperactivity disorder. Complexity. 2016:21(6): 412-19. DOI: http://dx.doi.org/10.1002/cplx.21700

Hoyer D, Kowalski EM, Schmidt A, Tetschke F, Nowack S, Rudolph A, et al. Fetal autonomic brain age scores, segmented heart rate variability analysis, and traditional short term variability. Front Hum Neurosci. 2014; 8:948. DOI: http://dx.doi.org/10.3389/fnhum.2014.00948

Hoyer D, Tetschke F, Jaekel S, Nowack S, Witte OW, Schleussner E, et al. Fetal functional brain age assessed from universal developmental indices obtained from neuro-vegetative activity patterns. PLoS One. 2013;8(9): e74431. DOI: http://dx.doi.org/10.1371/journal.pone.0074431

Publicado

2016-08-29

Edição

Seção

Artigos Originais