Confiamos nos dados? As implicações da datificação para o monitoramento social

Autores

DOI:

https://doi.org/10.11606/issn.1982-8160.v11i1p39-59

Palavras-chave:

Big Data, datificação, vigilância, mídia social, metadados

Resumo

Hoje há uma notável tolerância ao Big Brother e ao Big Business acessando rotineiramente as informações pessoais do cidadão, também conhecidas como Big Data. Parte da explicação para isso pode ser encontrada na gradual normalização da datificação como um novo paradigma na ciência e na sociedade. A datificação está se tornando um princípio central, não apenas entre os adeptos da tecnologia, mas também entre os acadêmicos. Este artigo desconstrói as bases ideológicas da datificação, argumentando que
ela baseia-se em reivindicações ontológicas e epistemológicas problemáticas. A ideologia do dataísmo mostra características de crença generalizada na quantificação objetiva do comportamento humano, por meio das tecnologias de mídia on-line.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • José van Dijck, Universiteit Utrecht
    Professora emérita da Universiteit Utrecht e presidente da Academia Real de Artes e Ciências dos Países Baixos. Autora de vários artigos e livros, entre outros, The culture of connectivity: a critical history of social media, publicado em 2013 pela Oxford University Press.

Referências

AMOORE, L. Data derivatives: on the emergence of a security risk calculus for our times. Theory, Culture and Society, Thousand Oaks, v. 28, n. 6, p. 24-43, dez. 2011. DOI: http://dx.doi.org/10.1177/0263276411417430

ANDREJEVIC, M. Exploitation in the Data Mine. In: FUCHS, C. et al. (Eds.). Internet and surveillance: the challenges of Web 2.0 and social media. Nova Iorque: Routledge, 2012. p. 71-88.

______. The work that affective economics does. Cultural Studies, Abingdon, v. 25, n. 4/5, p. 604-620, 2011. DOI: http://dx.doi.org/10.1080/09502386.2011.600551

ASH, T. G. If Big Brother came back, he’d be a public-private partnership. The Guardian, Londres, 27 jun. 2013. Disponível em <https://goo.gl/a0Y-JZF>. Acesso em: 12 abr. 2017.

ASUR, S.; HUBERMAN, B. A. Predicting the future with social media. Ithaca, NY: Cornell University Library, 2011. Disponível em: <http://arxiv.org/abs/1003.5699>. Acesso em: 12 abr. 2017.

BOLLEN, J.; MAO, H.; PEPE, A. Determining the public mood state by analysis of microblogging posts. In: INTERNATIONAL CONFERENCE ON THE SYNTHESIS AND SIMULATION OF LIVING SYSTEMS, 12., 2010, Odense. Anais... Odense: University of Southern Denmark, 2010. Disponível em: <https://goo.gl/s3MOxM>. Acesso em: 12 abr. 2017.

BOLLIER, D. The promise and peril of Big Data. Washington, DC: The Aspen Institute, 2010. Disponível em: <https://goo.gl/lTEvxJ>. Acesso em: 12 abr. 2017.

BOYD, d.; CRAWFORD, K. Critical questions for Big Data: provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, Abingdon, v. 15, n. 5, 2012. DOI: http://dx.doi.org/10.1080/1369118X.2012.678878

BRIVOT, M.; GENDRON, Y. Beyond panopticism: on the ramifications of surveillance in a contemporary professional setting. Accounting, Organizations and Society, Amsterdam, v. 36, n. 3, p. 135-155, 2011. DOI: http://doi.org/10.1016/j.aos.2011.03.003

BROWN, B.; CHUI, M.; MANYIKA, J. Are you ready for the era of “big data”? McKinsey Quarterly, Nova Iorque, 2011. Disponível em: <https://goo.gl/l2rQs3>. Acesso em: 12 abr. 2017.

BUCHER, T. Want to be on the top? Algorithmic power and the threat of invisibility on Facebook. New Media & Society, Thousand Oaks, v. 14, n. 7, p. 1164-1180, Apr. 2012. DOI: http://dx.doi.org/10.1177/1461444812440159

CHA, M. et al. Measuring user influence in Twitter: the million dollar fallacy. In: INTERNATIONAL AAAI CONFERENCE ON WEBLOGS AND SOCIAL MEDIA, 4., 2010, Palo Alto, CA. Anais... Palo Alto, CA: The AAAI Press, 2010. Disponível em: <https://goo.gl/ZXd308>. Acesso em: 12 abr. 2017.

CHENEY-LIPPOLD, J. A new algorithmic identity: soft biopolitics and the modulation of control. Theory, Culture & Society, Thousand Oaks, v. 28, n. 6, p. 164-181, 2011. DOI: http://dx.doi.org/10.1177/0263276411424420

DIAKOPOULOS, N.; SHAMMA, D. A. Characterizing debate performance via aggregated Twitter sentiment. In: CHI CONFERENCE, 28., 2010, Atlanta, GA. Anais... Atlanta: ACM Conference on Human Factors in Computing Systems, 2010. Disponível em: <https://goo.gl/dVtMXK>. Acesso em: 12 abr. 2017.

DING, Y. et al. Broadcast yourself: understanding YouTube uploaders. In: INTERNET MEASUREMENT CONFERENCE, 2011, Berlim. The 2011 Internet Measurement Conference. Disponível em: <https://goo.gl/fx7EF2>. Acesso em: 12 abr. 2017.

DRAPER, N. Group Power: discourses of consumer power and surveillance in group buying websites. Surveillance & Society, Abingdon, v. 9, n. 4, p. 394-407, 2012. Disponível em: <https://goo.gl/Zgb1cS>. Acesso em: 12 abr. 2017.

GIGLIETTO, F.; ROSSI L.; BENNATO, D. The Open Laboratory: limits and possibilities of using Facebook, Twitter, and YouTube as a research data source. Journal of Technology in Human Services, Abingdon, v.30, n. 3-4, p. 145-159, dez. 2012. DOI: http://dx.doi.org/10.1080/15228835.2012.743797

GILLESPIE, T. The politics of “platforms”. New Media & Society, Thousand Oaks, v. 12, n. 3, p. 347-64, 2010. DOI: http://dx.doi.org/10.1177/1461444809342738

GITELMAN, L. (Ed.). “Raw Data” is an oxymoron (Infraestructures). Cambridge, MA: MIT Press, 2013.

GOEL, V.; WYATT, E. Facebook privacy change is subject of F.T.C. inquiry. The New York Times, Nova Iorque, 2013. Disponível em: <https://goo.gl/CiOqqv>. Acesso em: 12 abr. 2017.

HARTZOG, W.; SELINGER, E. Big Data in small hands. Stanford Law Review Online Perspectives, Standford, v. 66, n. 81, 3 set. 2013. Disponível em: <https://goo.gl/lUpHFh>. Acesso em: 12 abr. 2017.

HELMOND, A.; GERLITZ, C. The like economy: social buttons and the data-in-tensive web. New Media & Society, Thousand Oaks, v. 15, n. 8, p. 1348-1365, fev. 2013. DOI: http://dx.doi.org/10.1177/1461444812472322

JENTZSCH, N.; PREIBUSCH, S.; HARASSER, S. Study on monetizing privacy: an economic model for pricing personal information. Heraklion: European Union Agency for Network and Information Security, 2012. Disponível em: <https://goo.gl/sdu4tG>. Acesso em: 12 abr. 2017.

LANGLOIS, G. Participatory culture and the new governance of communication: the paradox of participatory media. Television and New Media, Thousand Oaks, v. 14, n. 2, p. 91-105, 2013. DOI: http://dx.doi.org/10.1177/1527476411433519

LATOUR, B. Beware, your imagination leaves digital traces. Times Higher Literary Supplement, Londres, 6 abr. 2007. Disponível em: <https://goo.gl/doqlHK>. Acesso em: 12 abr. 2017.

LOVINK, G. Networks without a cause: a critique of social media. Cambridge: Polity, 2012.

KOSINSKI, M.; STILLWELL, D.; GRAEPEL, T. Private traits and attributes are predictable from digital records of human behavior. PNAS, Washington, DC, v. 110, n. 15, p. 5802-5805, 2013. DOI: http://dx.doi.org/10.1073/pnas.1218772110

KWAK, H. et al. What is Twitter, a social network or a news media? In: INTERNATIONAL WORLD WIDE WEB (WWW) CONFERENCE, 19., 2010, Raleigh, NC. Anais... Raleigh, NC: International World Wide Web Conference Committee, 2010. p. 591-600. Disponível em: <https://goo.gl/3azQ>. Acesso em: 12 abr. 2017.

MAGER, A. Algorithmic Ideology: how capitalist society shapes search engines. Information, Communication & Society, Abingdon, v. 15, n. 5, p. 769-787, 2012. DOI: http://dx.doi.org/10.1080/1369118X.2012.676056

MAHRT, M.; SCHARKOW, M. The value of Big Data in digital media research. Journal of Broadcasting & Electronic Media, Abingdon, v. 57, n. 1, p. 20-33, 2013. DOI: http://dx.doi.org/10.1080/08838151.2012.761700

MANOVICH, L. Trending: the promises and the challenges of big social data. In: GOLD, M. K. (Ed.). Debates in the digital humanities. Minneapolis: University of Minnesota Press, 2011. p. 460-475.

MAYER-SCHOENBERGER, V.; CUKIER, K. Big Data: a revolution that will transform how we live, work, and think. Londres: John Murray, 2013.

O’CONNOR, B. et al. From Tweets to Polls: linking text sentiment to public opinion. Association for the Advancement of Artificial Intelligence, Palo Alto, CA, p. 122-129, 2010. Disponível em: <https://goo.gl/6FsshC>. Acesso em: 12 abr. 2017.

OREMUS, W. With friends like these: how your friends, family, and co-workers are secretly helping social networks gather intelligence on you. Slate.com, Brooklyn, NY, 26 jun. 2013. Disponível em: <https://goo.gl/wLbjD>. Acesso em: 12 abr. 2017.

PARISER, E. The filter bubble: what the internet is hiding from you. Nova Iorque: Viking, 2011.

PIERSON, J. Online privacy in social media: a conceptual exploration of empowerment and vulnerability. Communications and Strategies, Brussels, v. 4, n. 88, p. 99-120, 2012. Disponível em: <https://goo.gl/qcTyeq>. Acesso em: 12 abr. 2017.

QUERCIA, D. et al. Our Twitter profiles, our selves: predicting personality with Twitter. In: IEEE INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING, 2011, Boston. Anais... Boston: IEEE ComSoc, 9-11 out. 2011. DOI: http://dx.doi.org/10.1109/PASSAT/SocialCom.2011.26

RALEY, R. Dataveillance and Countervailance. In: GITELMAN, L. (Ed.). “Raw Data” is an oxymoron. Cambridge, MA: MIT Press, 2013. p. 121-146.

RICHARDSON, M. Learning about the world through long-term query behavior. ACM TWeb, Nova Iorque, v. 2, n. 4, 2008. DOI: http://dx.doi.org/10.1145/1409220.1409224

RISEN, J.; WINGFIELD, N. Silicon Valley and spy agency bound by strengthe-ning web. The New York Times, Nova Iorque, 19 jun. 2013. Disponível em: <https://goo.gl/vHizF>. Acesso em: 12 abr. 2017.

RUSHE, D. Zuckerberg: US Government “blew it” on NSA surveillance. The Guardian, Londres, 11 set. 2013. Disponível em: <https://goo.gl/R5iHKk>. Acesso em: 12 abr. 2017.

SAKAKI, T.; OKAZAKI, M.; MATSUO, Y. Earthquake shakes Twitter users: real-time event detection by social sensors. In: INTERNATIONAL WORLD WIDE WEB CONFERENCE PROCEEDINGS, 2010, Raleigh, NC. Anais... Raleigh, NC: International World Wide Web Conference Committee, 2010. Disponível em: <https://goo.gl/QkY6na>. Acesso em: 12 abr. 2017.

SMITH, A.; BRENNER, J. Twitter Use 2012. Pew Research Center, Washington, DC, 31 maio 2012. Disponível em: <https://goo.gl/ZN8gcJ>. Acesso em: 12 abr. 2017.

VAN DIJCK, J. “You have one identity”: performing the self on Facebook and LinkedIn. Media, Culture & Society, Thousand Oaks, v. 35, n. 2, p. 199-215, 2013a. DOI: http://dx.doi.org/10.1177/0163443712468605

______. The culture of connectivity:a critical history of social media. Nova Iorque: Oxford University Press, 2013b.

______. The transparent body: a cultural analysis of medical imaging. Seattle: University of Washington Press, 2005.

VAN DIJCK, J.; POELL, T. Understanding social media logic. Media and Communication, Lisboa, v. 1, n. 1, p. 2-14, 2013. DOI: http://dx.doi.org/10.17645/mac.v1i1.70

WEERKAMP, W.; DE RIJKE, M. Activity prediction: a Twitter-based exploration. Sigir Workshop on Time-aware Information Access. Portland, 2012. Disponível em: <https://goo.gl/6lEmGn>. Acesso em: 12 abr. 2017.

WILSON, N. et al. Interpreting Google flu trends data for pandemic H1N1 influenza: the New Zealand experience. European Communicable Disease Bulletin, Saint-Maurice, v. 14, n. 44, p. 429-433, 2009. Disponível em <https://goo.gl/ignVj2>. Acesso em: 12 abr. 2017.

Downloads

Publicado

2017-04-30

Edição

Seção

Dossiê

Como Citar

Dijck, J. van. (2017). Confiamos nos dados? As implicações da datificação para o monitoramento social. MATRIZes, 11(1), 39-59. https://doi.org/10.11606/issn.1982-8160.v11i1p39-59