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Covariance localization in the ensemble transform Kalman filter 
based on an augmented ensemble

With the increased density of available observation data, data assimilation has become an increasingly important tool 
in marine research. However, the success of the ensemble Kalman filter is highly dependent on the size of the ensemble.  
A small ensemble used in data assimilation could cause filter divergence, undersampling and spurious correlations. The 
primary method to alleviate these problems is localization. It can eliminate some spurious correlations and increase the 
rank of the forecast error covariance matrix. The ensemble transform Kalman filter has been widely used in various studies 
as a deterministic filter. Unfortunately, the covariance localization cannot be directly applied to ensemble transform Kalman 
filter. The new covariance localization needs to be presented to adapt the ensemble transform Kalman filter. Based on the 
method of expanded ensemble and eigenvalue decomposition, this study describes a variation of covariance localization 
that takes advantage of an unbiased covariance matrix from the expanded ensemble. Experiments described herein show 
that the new method outperforms the localization methods proposed by others when used in the ensemble transform 
Kalman filter. The new method yields an analysis estimate that is closer to the true state under different experimental 
conditions.
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INTRODUCTION

Data assimilation in oceanography and 
meteorology seeks to provide a current analysis of 
the state of the atmosphere and ocean, to be used 
as an initial condition for a forecast. The use of Monte 
Carlo experiments and ensemble data assimilation 
also have long roots in Numerical Weather Prediction 
(NWP), in particular in the fields of ensemble 
forecasting and observing system simulation 
experiments (OSSEs). Ensemble data assimilation 

methods are being continuously improved and have 
become a viable choice in operational numerical 
prediction. The Ensemble Kalman filter (EnKF) 
was originally introduced by Evensen (1994), an 
outstanding ensemble data assimilation method 
that allows for nonlinear models being employed 
in a formulation based on the Kalman filter. In 
ensemble-based data assimilation, observation error 
and forecast error must be resolved. For the study 
of observation error, please see the article by Zang 
and Wang (2019). The statistical accuracy of forecast 
error is extremely important for any ensemble 
data assimilation scheme, since the forecast error 
covariance matrix (the fP matrix, hereinafter) is often 
estimated from ensemble members.

However, the computational cost of producing 
an ensemble of forecasts large enough to estimate 
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sufficiently accurate and high-rank covariance 
matrices is prohibitive. Current NWP models have 
state spaces of O(107) (UK Met Office, 2008) and thus 
require a large ensemble to adequately represent 
the statistics. Typically, an ensemble filter uses a 
smaller number of ensemble members than the size 
of the state. If it is so small that the ensemble is not 
statistically representative, then the system is said to 
be undersampled.

In general, undersampling would lead to filter 
divergence, underestimation of forecast error 
covariance and spurious correlations. Therefore, the 
EnKF could generate a non-optimal analysis due to 
these problems. To overcome these obstacles, various 
methods have been presented in recent years.

The most famous methods are covariance inflation, 
local analysis and covariance localization in the 
current ensemble-based data assimilation research. 
Covariance inflation is a method of correcting an 
underestimation in the forecast error covariance, 
which was introduced by Anderson and Anderson 
(1999). The main idea of covariance inflation is to 
increase the forecast error covariance by inflating the 
difference between ensemble mean and ensemble 
members. It can be applied before the analysis 
calculations, ( )f f f f

i ix q x x x← − + , where 
the ←  represents the replacement of the previous 
value and q  is an inflation factor. Although the 
covariance inflation overcomes the underestimation 
of forecast error covariance, the inflation factor 
does not help to correct the problem of long-range 
spurious correlations. Therefore, more sophisticated 
methods are required to settle spurious correlations 
in the forecast error covariance matrix. There are 
currently two approaches including the covariance 
localization and local analysis. Covariance localization 
(Houtekamer and Mitchell, 2001; Whitaker and 
Hamill, 2002) is a method that cuts off longer range 
correlations existing in the forecast error covariance 
matrix at a specified distance. It works by applying 
a Schur product (Horn, 1990) to the forecast error 
covariance matrix fP . An important and significant 
benefit of the Schur product is that it could increase 
the rank of forecast error covariance matrix fP (Oke 
et al., 2007). Local analysis (Hunt et al., 2007; Ott et al., 
2004) is presented to perform an analysis to update 
the local state variables by using local observations. 
In general, one could update a variable state at a 

specific location or grid point by assimilating only the 
observations within a fixed range. The length of the 
fixed range determines the number of observations 
during assimilation.

Compared with the covariance localization, the 
local analysis is an independent approach. It could 
be used in any data assimilation scheme. Because 
the Schur product is only applied in the forecast 
error covariance matrix Pf that is never computed 
in ensemble transform Kalman filter (ETKF) (Bishop 
et al., 2001), covariance localization cannot be 
combined with the ETKF. See Janjić et al. (2011) for a 
specific discussion of this problem.

Currently, many research studies have focused on 
covariance localization and local analysis (Greybush 
et al., 2010; Janjić et al., 2011; Sakov and Bertino, 2011; 
Jiang and Gorell, 2019; Luo et al., 2019). Although 
local analysis can be applied in any data assimilation 
scheme, it does not have the same performance as 
the covariance localization. Miyoshi and Yamane 
(2007) pointed out that local analysis is similar to 
covariance localization, but local analysis usually 
results in a weak localization effect. Because local 
analysis is performed independently, smoothness of 
the analysis fields across the sub-domain boundaries 
becomes an issue of concern (Janjić et al., 2011). 
The experiments of Janjić et al. (2011) show that the 
minimum RMS error obtained for the local analysis 
(domain localization) is larger than that for covariance 
localization. Overall, it seems that at strong levels of 
assimilation, covariance localization produces a more 
robust analysis (Sakov and Bertino, 2011). Therefore, 
as can be seen from the aforementioned studies, 
covariance localization may be a relatively good 
method.

To overcome the obstacle that covariance 
localization cannot be applied to the ETKF, Petrie 
(2008) presented a new approximation of localization 
in the ETKF. It achieved by applying a Schur product 
between the square root of the correlation function 
ρ (an n n× -dimensional matrix, where n  

denotes the number of variables) and a new forecast 
ensemble perturbation matrix. The square root of 
correlation function is calculated by singular value 
decomposition (SVD) and this new forecast ensemble 
perturbation matrix is extended by n N− (where N
denotes the number of ensembles, N << n ); columns 
of zeros are added to the raw forecast ensemble 
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perturbation matrix to correct the dimensions and 
then a new forecast ensemble perturbation matrix 
obtained. The purpose of this correction is to unify 
the dimensions of the square root of the correlation 
function and the new forecast ensemble perturbation 
matrix. However, this new covariance localization is 
a poor approximation and the effect of assimilation 
poor.

Based on sample correlations and matrix 
factorization, several adapted methods have been 
developed to compute the localization function, 
which is dynamically applied as the covariance 
localization to the ETKF. Bishop and Hodyss (2009a) 
presented a new method for generating localization 
functions that depend on the true error correlation 
functions and that also adapt to the width of the true 
error correlation function. The method uses ensemble 
correlations raised to a power (ECO-RAP). The 
calculation of this method would be too expensive, 
so Bishop and Hodyss (2009b) used a factorization 
property for a Covariance Adaptively Localized 
with ECO-RAP (CALECO) forecast error covariance 
matrix that, together with other simplifications, 
reduces the cost. In this new presented method, a 
CALECO ensemble is provided and each member of 
the CALECO ensemble is an element-wise product 
between one raw ensemble member and one column 
of the square root of the ECO-RAP matrix.

Although the new covariance localization is 
presented and could be used in the ETKF, there are 
still two problems in the actual implementation. First, 
it gives M posterior ensemble members but there are 
only enough computational resources to propagate 
N members (N < M) in a practical application leaving 
the question of how to obtain the M posterior 
ensemble members. Second, how the square root 
of the ECO-RAP matrix could be rapidly computed 
must be resolved. Here, we choose a simple method 
to obtain the N posterior ensemble members by 
using a stochastic subsampling approach, previously 
recognized as a poor method (Bishop et al., 2017). This 
method has been adapted, however, using a constant 
inflation factor to obtain an analysis with sufficient 
accuracy. Then, instead of the ECO-RAP matrix, the 
Gaspari and Cohn localization function (GC function) 
(Gaspari and Cohn, 1999) is used. The covariance 
localization method presented here was then used in 
two models to exam its performance. Although the N 

analysis ensemble members are obtained randomly, 
the effect of localization is satisfactory in subsequent 
experiments.

Section 2 of this study briefly describes the new 
covariance localization in the ETKF. Section 3 describes 
the Lorenz-96 model and Kuramoto–Sivashinsky (KS) 
equation used in the specific experimental designs. 
Section 4 summarizes the main results of the paper. 
Conclusions are in Section 5.

METHOD

Model space covariance localization was chosen 
as the localization method; Campbell et al., (2010) 
compared the performances of EnKFs that use 
model space covariance localization and observation 
space covariance localization and found that model 
space covariance localization was superior. Bishop 
and Hodyss (2009b) showed a simple method of 
incorporating model space localization with an ETKF-
type data assimilation scheme (explained in detail 
above). Based on that idea, we adapted their method 
to propose a new covariance localization method.

The expansion of ensemble size

In the ETKF method, the difficultly of applying 
covariance localization is that an n n× -dimensional 
forecast error covariance matrix Pf is not explicitly 
expressed and it is implied through the forecast ensemble 
perturbation matrix X'f (See the following paragraph for 
the definition of matrix X'f). This causes problems when 
we wish to introduce a Schur product which acts on 
the forecast error covariance matrix Pf and not on the 
perturbation matrix X'f. Therefore, the current purpose is 
to achieve a Schur product on the perturbation matrix X'f, 
but not the forecast error covariance matrix P f.

To achieve a Schur product on the perturbation 
matrix X'f and the square root of localization function ρ , 
we introduce the following notation and definitions. 
Let [ ]1= , , LW w w  denote the square root of the 
localization function ρ , so that TWWρ = . The 
parameter L represents the number of columns of 
the matrix W, the number of selected eigenvalues 
from the localization function .ρ  For more details, 
please see section 2.2. Let f f f TP X X′ ′= , where 

[ ]f f f f f f f
1 21 2 1 , , ,, , , NNX N u u ux x x x x x′ = − = − − −              

                               gives the square root of the sample 
error covariance matrixPf of the raw N ensemble 
[ ]f f f f f f f

1 21 2 1 , , ,, , , NNX N u u ux x x x x x′ = − = − − −  
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members. { }f , 1, ,ix i N=   represents different 
ensemble members and x fr  represents the ensemble 
mean. Then, the localized ensemble covariance 
matrix can be given by

P P Z Zloc
f f f fT% t= =                                           (1)

Here n is the model space dimension (the number 
of variables). The square root Zf of localized forecast 
error covariance matrix f

locP is a n NL×  matrix given 
by the modulation product ( )∆ of X'f by W  defined 
by

, , ..., , ..., , , ...,Z W X w u w u w u w u w u w u’f f
N L L L N1 1 1 2 1 1 2% % % % % %T= = " %

, , ..., , ..., , , ...,Z W X w u w u w u w u w u w u’f f
N L L L N1 1 1 2 1 1 2% % % % % %T= = " %                                  (2) 

Note that is a square root of the localized forecast 
error covariance matrix f

locP . It will replace X'f as the 
new perturbation matrix in the subsequent process 
of assimilation. The expansion of ensemble size is 
evident from Eq. (2): Zf has M N L= ×  ensemble 
members whereas X'f only has N ensemble members. 
This method solves the problem of fewer ensemble 
members in the assimilation system. Meanwhile, 
the Schur product has been successfully used in the 
perturbation matrix X'f.

GC localization function decomposition

The localization function is normally defined to 
be a correlation function with local support. Here, the 
GC localization function ρ  is used as a correlation 
function in the new model space covariance 
localization. It can be given by,

                                                                                               (3)

where z  is the Euclidean distance between 
the two grid points in physical space. When this 
localization function is applied to specified grid points 
in the model discrete domain, it becomes a matrix. The 
length scale c  is defined by 10 3c r= , where 
the r  is a chosen cutoff length scale. Note that the 
factor 10 3  could tune the localization function to 
be optimal as determined by Lorenc (2003).

To get the square root matrix of the GC localization 
function ρ , we used a simple and effective method 
different than that used in Petrie (2008). First, the 
eigenvectors and eigenvalues pairs of ρ  were 
computed and ordered from the largest eigenvalue to 
smallest eigenvalue. Bishop et al. (2017) then used the 
top 10 largest eigenvalues and their corresponding 
eigenvectors to construct a square root matrix (L=10). 
Obviously, when dealing with a large number of state 
variables, the top 10 largest eigenvalues and their 
corresponding eigenvectors cannot fully represent 
the error variation of the system variables, so the 
choice of L  is redefined in this paper. Because the 
top 10%  of eigenvalues could account for 70%  of 
the sum of all the eigenvalues, the selected interval of 
the parameter L  was defined as follows,

where 10%eig  represents the number of the first 
10% of eigenvalues in descending order. We can 
determine the optimal value of L from the interval 
by conducting multiple experiments. The value of L  
can thus be dynamically selected to better represent 
the error of the variable. Then the square root W  
of the localization function ρ  can be obtained by 
using the following equation,

                                                                                             (4)

where the Leigenvectors  represents the 
matrix of the first L eigenvectors and 1 2

Leigenvalue  
represents the square root matrix of the matrix of 
corresponding eigenvalues.

New covariance localization used in ETKF
When the square root , ...,z z zf f

M
f

1= " % 
of localized forecast error covariance matrix f

locP  
is obtained from Eq. (2) in section 2.1, then one 
can use it to create an M-member ensemble

, , ...,v v v vf f f
M
f

1 2= " %, the specific calculation is as 
follows,

                                                                                           (5)

W eigenvectors eigenvalue /
L L

1 2=

,

,

, ..., ,

v v M z

v N x

Z
M

v v v v

1
1

1
1

f f f

f f

f f f f f

k k

j
j

N

M

1

1

= + -
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=
-

- -
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r
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r r" %
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( , ), ( , ) ,min maxeig eig10 10% %10 10" %
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where the constant factor M 1-  is different 
from that of Bishop et al. (2017). This treatment is to 
ensure the unbiasedness of the covariance estimate. 
From Eq. (5), the new forecast ensemble has the same 
mean as the raw ensemble. Then, except for the 
changes in the forecast ensemble, the next operation 
is exactly the same as the operations of standard 
ETKF. The scaled forecast observation ensemble 
perturbation matrix Y

f{  is introduced.

                                                                                             (6)

where R is a p × p dimension observation 
error covariance matrix (p denotes the number of 
observations) and H is the observation operator. Matrix 
Y

f{ is the forecast ensemble perturbation matrix 
projected into the observational space and scaled by 
R-1/2. The effect of scaling the observations by the square 
root of observation error covariance is to normalize the 
observation of physical quantities with their respective 
error standard deviations (Petrie 2008). The singular value 
decomposition (SVD) of the scaled forecast observation 
ensemble perturbation matrix Y

f{  is given as follows,

                                                                                              (7)

where the matrix U  and V  are orthogonal 
matrices, the singular values of fˆ TY  are given by 
Σ . U  has dimensions M M× , Σ  has dimensions 
M p×  and V  has dimensions p p× . Next, the 
square root aZ  (analysis perturbation) of analysis 
error covariance matrix aP  is given by

                                                                                                (8)

The posterior mean of the distribution of truth is 
given by

                                        .                                               (9)

Obviously, if one uses the analysis perturbation 
matrix aZ  and posterior mean av  to calculate 
the analysis ensemble aV , the size of the analysis 
ensemble aV  would be n M× . But there are only 
enough computational resources to propagate N 
members, so the analysis ensemble aV  cannot be 
used in the next forecast equation.

A stochastic subsampling approach

To solve the problem mentioned in section 2.3, an 
adapted stochastic subsampling approach method is 
presented. The specific operation is given by

                                                                                              (10)

where the matrix aX  is an n N×  analysis ensemble 
and [ ]

elements
1 1, ,1T

N
N

=  . Note that the matrix ( ),randn M N  is 
an M × N matrix whose elements are independent 
random draws from a normal distribution, so it can 
transform the matrix aZ  to be an n N×  matrix as a 
square root of an analysis error covariance matrix aP
. The 1N -  used in Eq. (9) could be recognized as a 
constant inflation factor. In the next section, we use these 
above-mentioned methods in two different models to 
examine their feasibility.

The pseudo-codes of the new method proposed 
in this article are as follows:

1. Initialization
• Initial system state f

0x , initial forecast error 
covariance matrix f

0P  and initial forecast ensemble
.x f

i i
N

1=E H
Note: in the initialization process of this paper, the 

forecast error covariance matrix   is assumed in advance. 
The initial forecast ensemble is constructed by using 
the true value at the initial time and the forecast error 
covariance matrix. Then the average of the forecast 
ensemble is taken as the initial system state.

2. For 1,2,kt = 
(a) Augmented ensemble
• Compute the square root of GC localization 

function ρ

Selected interval of parameter L: 

• Compute the forecast ensemble perturbation 
matrix

’ , ’ ,Y R Y Y HZ
f f f f

2
1= - ={

( )Z Z U I U/fa T T1 2//= + -" %

,Y U V
fT T/={

, , ..., ,WW W w wT
L1t = = " %

’ , ... , , ...,X
N

x x x x x x u u u
1

1f f f f f
N
f f

N1 2 1 2=
-

- - - - =r r r" "% %

’ , ... , , ...,X
N

x x x x x x u u u
1

1f f f f f
N
f f

N1 2 1 2=
-

- - - - =r r r" "% %

( ) ( )v v Z U I V R y Hv/f fa f T T1 1 2/ / /= + + -- -r r r

( ) ( )v v Z U I V R y Hv/f fa f T T1 1 2/ / /= + + -- -r r r
( ) ( )10% 10%min 10, ,max 10,eig eig  

, ..., ( , )x x X v N Z randn M N1 1a
N
a a a

N
T a

1 = = + -r" "% %
, ..., ( , )x x X v N Z randn M N1 1a

N
a a a

N
T a

1 = = + -r" "% %
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• A new Schur product between matrix W  and 
matrix X'f (equivalent to the augmented ensemble)

• Compute new forecast ensemble

• Compute new forecast ensemble perturbation 
matrix

(b) Analysis
• The new forecast ensemble perturbation matrix  

Zf and new forecast ensemble

i
f

i
M

1o =
F I used in standard ETKF
• Compute the analysis ensemble perturbation 

matrix aZ  and associated mean

• Stochastic subsampling:   

(c) Forecast
• Compute the forecast ensemble for 

, ..., , ( )i N x M x1 f
i i

a= =

and the mean

• Compute the forecast ensemble perturbation 
matrix

’ , ...,X
N

x x x x
1

1f f f f
N1=

-
- -r rR W

MODEL AND EXPERIMENTAL DESIGN

This section describes the experimental designs 
and the models that are implemented within 
the ETKF. They are the Lorenz-96 model (Lorenz 
and Emanuel, 1998) and Kuramoto-Sivashinsky 

equation (KS) (Sivashinsky, 1977), both used 
previously in studies of state estimation problems.

Lorenz-96 model

The Lorenz-96 model is a one-dimensional 
toy-model and has been widely used to test the 
performance of a data assimilation method. It is 
assumed to contain n variables{ } , 1, 2, ,ix i n=  . 
The dynamic system is represented by the following 
ordinary differential equations,

, , ...,dt
dx x x x x F i n1i

i i i i1 2 1= - - + =+ - -Q V
                                                                                           (11)

Note that the domain in which the n
variables are defined is circle-like, so that

1 1 0 1 1, ,n n nx x x x x x− − += = = . The constant 
forcing term F  is set as 8 and can cause chaotic 
behavior. In this study, the Lorenz-96 model is solved 
by the fourth-order Runge-Kutta scheme with a time 
step Δt of 0.01 units (the time unit equal to 5 days) 
until a final time of T = 20.

KS equation

The KS equation is expressed as follows,

                                                                                         (12)

It is a non-linear partial differential equation; 
complex and chaotic behavior can be produced 
due to the presence of second and fourth order 
terms. Here, the KS equation is solved by using an 
exponential time differentiating Runge-Kutta 4 
numerical scheme with a time step of Δt = 0.25 until a 
final time of T = 250.

Experimental design

To analyze the ETKF with new covariance 
localization (referred to as NCL) and to demonstrate 
the comparisons of NCL with the methods presented 
in Petrie (2008) (referred to as the P_method) and 
Bishop et al. (2017) (referred to as GETKF), time series 
values using multiple methods were calculated. The 
specific experimental operations are demonstrated 
in this section.

In general, the true trajectory xt is determined by 
evolving the perfect model equations from known 
initial conditions, where the superscript t denotes 

( , , ..., ), ..., ( , , ..., )Z W X w u w u w u w u w u w u’f f
N L L L N1 1 1 2 1 1 2% % % % % %T= = " %

( , , ..., ), ..., ( , , ..., )Z W X w u w u w u w u w u w u’f f
N L L L N1 1 1 2 1 1 2% % % % % %T= = " %

v N x1f
j
f

j

N

1

=
=

r /

( ), ..., ( )Z
M

v v v v
1

1f f f
M
f f

1=
-

- -r r" %

( ) , , ...v v M Z k M1 1k
f f

k= + - =r

, ..., ( , )x x X v N Z randn M N1 1a
N
a a a

N
T a

1 = = + -r" "% %

( )Z Z U I U/fa T T1 2//= + -" %
( ) ( )v v Z U I V R y Hv/f fa f T T1 1 2/ / /= + + -- -r r r

, ..., ( , )x x X v N Z randn M N1 1a
N
a a a

N
T a

1 = = + -r" "% %

x N x1f f
i

i

N

1

=
=

r /

t
u u x

u
x
u

x
u

2

2

4

4

2
2

2
2

2
2

2
2=- - -

, , ...,dt
dx x x x x F i n1i

i i i i1 2 1= - - + =+ - -Q V
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true. Then the observations y can be created by using 
the true trajectory xt and observation error covariance 
matrix R,

                                                                                         (13)

where H  denotes an observation operator 
that maps the true state vector into the observation 
space. Here, the uncorrelated observation errors are 
considered so that the observation error covariance 
matrix R  is a diagonal matrix in which all diagonal 
elements are one. As for ensemble members, all 
the members are evolved using the perfect model 
equations but beginning from perturbed initial 
conditions. The details for the experiments are 
provided as follows.

To generate the true trajectory, the Lorenz-96 
equations are started from initial conditions where 

8, 1, , 40ix i= =   with a small perturbation 
of 0.2 added to 20x . Then to provide the initial 
ensemble members for different experiments, the 
N = 5 and N = 10 pseudo-random samples from the 
normal distribution ( )20, bN Iσ  are added to the 
true initial condition, where the matrix I  demotes an 
identity matrix and 2

bσ  is the forecast error variance, 
respectively. The observations are calculated by using 
Eq. (13) with the number of observations of 35p =  
(partial observation) or 40p =  (full observation) in 
different experiments, respectively. The frequency 
varies between experiments, with the chosen 
frequencies being observations available every 5 or 
10 time steps, respectively.

The experimental design for KS equation are 
similar to the above experimental designs. The 
true trajectory is defined by the solution to the KS 
equation  the periodic domain 0 32x π≤ ≤  from 
initial conditions cos 1 sin

16 16
x xu     = +        

 using n = 
256 spatial points. The initial ensemble members 
for different experiments are calculated by adding 
the  and  pseudo-random samples from the normal 
distribution ( )20, bN Iσ  to the true initial condition, 
respectively. Then, the observations are calculated 
by using Eq. (12) with the number of observations, 

235p =  (partial observation) or 256p =  (full 
observation) in experiments, respectively. The 
frequency varies between experiments, with the 
chosen frequencies being observations available 
every 5 or 10 time steps, respectively.

RESULTS AND DISCUSSION

Several experiments were conducted to test 
the performances of the NCL, P_method and 
GETKF combined with the ETKF, respectively. All 
experimental conditions were the same for each of 
the three methods. Meanwhile, to demonstrate the 
potential of the proposed method, we performed 
multiple experiments without covariance localization 
as a control. In these runs, the other settings are 
identical to the experiments with covariance 
localization. Meanwhile, the covariance localization 
was tested with different frequencies of observations 
and number of ensemble members in the above-
mentioned models.

We first consider the performance of NCL 
compared with the P_method and GETKF. To evaluate 
method performance for a particular variable, the 
root mean square error (RMSE) between the true 
trajectory and that of the analysis was calculated to 
assess analysis accuracy. The definition of the RMSE 
is given by,

                                                                                             (14)

Here, l  represents total assimilation time steps. 
The parameter settings for different experiments are 
shown in Table 1. The RMSEs were then calculated 
for different models and parameters, and the 
comparisons of the true trajectory and the analysis 
estimates are shown in Figures 1 to 4. From the 
different figures of RMSE in two models, there is a clear 
significant positive impact on the result from the NCL. 
It not only successfully uses covariance localization 
in ETKF, but also decreases the RMSE of analysis 
estimates compared with the method without 
covariance localization (NOCL), the P_method and 
GETKF. However, as for the NCL, the RMSEs of the 
last several model variables have a small increase in 
the conditions of partial observations (such as the 
conditions of C, G and H). The reason for this situation 
may be that these variables have no observations 
in data assimilation, and the assimilation process is 
less affected. The NCL had an obvious disadvantage 
compared with the GETKF for the condition of D, but 
it still outperforms the method without covariance 
localization, P_method. Overall, the results of the NCL 
are satisfactory.
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Table 1. The parameter settings for different experiments, here ‘all’ denotes 40 and 256 for the Lorenz-96 model and KS 
model, respectively; ‘partial’ denotes 35 and 235 for the Lorenz-96 model and KS model, respectively.

Condition Obs. Freq. (time steps) Obs. Num. (p) Ens. Num. (N)

A 5 all 5

B 5 all 10

C 5 partial 5

D 5 partial 10

E 10 all 5

F 10 all 10

G 10 partial 5

H 10 partial 10

Figure 1. Comparison of the RMSE with different experimental conditions (Lorenz-96 model).

Compared with covariance inflation, the major 
advantage of covariance localization is that it masks 
spurious correlations between distant state vector 
elements. Because the solution of the model used in 
experiments satisfies periodic boundary conditions, 
the distance between the state vector elements is 
determined by the index of two grids. An example of its 
effect on the Lorenz-96 model with a one-dimensional 
periodic boundary condition (NCL under experimental 
condition A), the GC localization function ρ , forecast 
error covariance matrix fP , Schur product fPρ   
and new Schur product ( )( )f f T

W X W X′ ′∆ ∆  is 

displayed from left to right in Fig. 5, which shows that this 
approximation ( )( )f f fT

W X W X Pρ′ ′∆ ∆ ≈   
effectively removed spurious correlations. The matrix 

( )( )f f T
W X W X′ ′∆ ∆  approximates a diagonal 

matrix due to the fact that spurious correlations are 
removed. More importantly, P_method not only 
reduces the value of the forecast variance but also 
does not remove the spurious correlations; this result 
with specific figures has been presented in Petrie 
(2008).

Filter divergence occurs when an incorrectly 
specified analysis state is unable to be adjusted 
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Figure 2. Comparison of the RMSE with different experimental conditions (Lorenz-96 model).

Figure 3. Comparison of the RMSE with different experimental conditions (KS model).
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Figure 4. Comparison of the RMSE with different experimental conditions (KS model).

Figure 5. The effect of NCL on the forecast error covariance matrix (Lorenz-96 model, Condition A).
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by observation assimilation to more accurately 
represent the true state of the system. One cause 
of filter divergence is undersampling; the ensemble 
member size may be important to the occurrence of 
filter divergence. Figure 6 and 7 show the difference 
between analysis states (NCL and GETKF) and the true 
trajectory in the Lorenz-96 model and the KS model 
under condition A, respectively. A large difference 
was observed between the analysis for NCL and 
GETKF. The analysis with NCL more accurately 
represented the true solution compared with the 
other covariance localization assessed. Hence, filter 
divergence may be well solved by the new method.

Figure 6. Value of the first variable according to NCL, GETKF and the 
truth  over time (Condition A).

Figure 7. Value of the first variable according to NCL, GETKF and the 
truth  over time (Condition A).

The above results show that the NCL is a good 
localization method in the models analyzed herein. 
We recommend the NCL method is implemented in 
future by other research groups.

CONCLUSIONS
This study proposes a variation of the 

localization method shown in Bishop et al. (2017) 
to realize the ETKF with a reduced number of 
ensemble members. To examine the effects of 
the method on resolving undersampling, a new 
method for ETKF that uses a GC localization 
function has been described. The square root 
of the localization function is composed of 
the top 10% of the largest eigenvalue and its 
corresponding eigenvector pair. From the results 
of assimilation and the Schur product, the effect of 
this processing is better. The NCL can remove the 
long range spurious correlations and the range of 
forecast error covariance when the Schur product 
is unchanged, an advantage over the original 
method. Meanwhile, the NCL method greatly 
reduces the RMSE in different experimental 
conditions. Note, however, that RSME would 
increase occasionally in experiments under partial 
observation conditions, so the new method still 
needs to be improved.
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