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INTRODUCTION
Estuaries are highly productive and biodiverse 

ecosystems, being particularly vulnerable to human 
impacts. Given their complexity and variability, 
effective monitoring demands high-resolution data. 
In these dynamic environments, the interaction 
between river and ocean waters creates a unique 
interplay of ecological processes, which require 
precise salt monitoring to ensure coastal water 
supply and ecological surveillance (Zhang et al., 
2010). Satellites can provide spatiotemporally 
continuous monitoring of water surface salinity in 

large areas compared to in situ measurements 
and model-derived reanalysis data (Kim et al., 
2023). L-band (1.4 GHz) passive microwave 
radiometers estimates sea surface salinity based 
on the relationship between the dielectric constant 
of seawater and brightness temperature (Zhou 
et al., 2017; Reul et al., 2020; Taillade et al., 
2023). However, low spatial resolution (Wang 
et al., 2019) and radio frequency interference 
(Kolodziejczyk et al., 2016) reduce applicability 
in estuaries with high salinity dynamics due to 
the intersection of freshwater and seawater. To 
address these limitations, ocean color satellites 
are used to estimate estuarine salinity via proxy 
water parameters (e.g., colored dissolved 
organic matter, suspended particulate matter) 
and statistical methods (e.g., linear or nonlinear 
regression, artificial neural networks) (Urquhart 

Optical remote sensing for estuarine surface salinity relies on correlation with water color parameters, facing 
limitations in spectra, resolution, and hydrodynamics, particularly in multi-outlet estuaries. In this study, 
Sentinel-2 images with 10m resolution were selected, and geographic coordinates, imaging date and band 
combinations were incorporated as inputs for a neural network model to capture spatiotemporal salinity 
distribution. By repeatedly constructing the model with varied inputs to mitigate the impact of input sample 
variations and ensure robustness, the final model, N2L-3, achieved high accuracy (R2 = 0.916 and overall RMSE 
below 1.5 PSU) and was chosen to estimate the estuarine surface salinity in the Pearl River Estuary. Our 
results revealed high-salinity offshore water intruding the eastern estuary channel during flood tides, gradually 
merging upstream with freshwater. Low-salinity water reached the Pearl River Front Channel and East River 
North Branch. During ebb tides, due to estuarine outflows, low-salinity water spread through river mouths and 
shifted eastward near Humen.

Abstract

Keywords: Estuarine surface salinity, Sentinel-2, Neutral network model, The Pearl River Estuary

https://orcid.org/0009-0003-7999-3139
https://orcid.org/0000-0003-0134-8220


Estuarine salinity via Sentinel-2 in PRE

Ocean and Coastal Research 2025, v73:e25016 2

Feng and He

et al., 2012; Chen and Hu, 2017; Liu et al., 2017; 
Nakada et al., 2018; Zhang et al., 2023). However, 
the empirical nature of salinity models based on 
ocean color satellites leads to regional differences 
in their formulation and in the water quality 
parameters used. Additionally, optical sensors with 
multiple water color bands lack sufficient spatial 
resolution (e.g., MODIS-Aqua, 250m; Sentinel-3 
OLCI, 300m), which hinders the monitoring of 
upstream channels. Although higher-resolution 
land satellites may fill data gaps for estuarine 
salinity monitoring, their broad spectral bands 
attenuate reflective characteristics of water quality 
parameters. Furthermore, image preprocessing 
is complicated by factors such as wind fields and 
imaging angles, amplifying noise information 
like water surface ripples, thus impacting the 
effectiveness of model operations. Therefore, it is 
difficult to apply statistical models to a compound 
estuary with multiple outlets and channels, such 
as the Pearl River Estuary (PRE). Neural networks 
are more suitable for this scenario due to their 
nonlinear fitting abilities (Urquhart et al., 2012; 
Zhang et al., 2023).

This paper aims to investigate the feasibility 
of retrieving estuarine surface salinity (ESS) 
using medium-high resolution images, such 
as Sentinel-2. By optimizing input parameters, 
a practical method was developed, with the 
evaluation of in situ measurements in the PRE. 
The study area and the involved data are outlined 
in Section 2. The proposed method is described in 
Section 3. The validation of models and the ESS 
distribution in the PRE are presented in Section 4. 
Section 5 discusses the findings and implications 
for further research.

METHODS
Study area and data description

The PRE is located in southern China and is the 
central area of the Guangdong-Hong Kong-Macao 
Greater Bay Area (GBA). It is a fan-shaped region 
formed by the confluence of the West River, the 
North River, the East River, and eight mouths 
(Figure 1). The complex mutual ocean-estuary-runoff 
interaction leads to intricate hydrodynamics, resulting 
in high variations of water salinity. 

Figure 1. Distribution map of salinity and tidal stations in the 
PRE. Black fonts represent the eight estuary outlets, blue 
fonts indicate the main streams described in this study, and 
orange fonts denote the tidal stations.

The measured salinity employed in this 
study consists of three sets in Practical Salinity 
Units ‰ (PSU): ① long-term hourly salinity data 
from 2015-2021 at 18 stations distributed in the 
PRE; ② hourly salinity data from Oct.-Dec. 2021 
at 24 stations mainly distributed in the East River 
Delta of the PRE; ③ salinity data with a two-hour 
measurement interval at 17 ship survey sites 
around the PRE from Dec. 28, 2019 to Jan. 5, 2020.

The MSI (multi-spectral instrument) images 
of Sentinel-2 spanning from 2015 to 2021 were 
utilized, with an imaging frequency of 10 days per 
scene prior to March 2017 (exclusive to Sentinel-2A) 
and five days per scene thereafter (including 
Sentinel-2A and Sentinel-2B). The selected 
bands—B2 (blue), B3 (green), B4 (red), and B8 
(near-infrared)—offer a spatial resolution of 10m, 
with center wavelengths of 490nm, 560nm, 665nm, 
and 842nm, respectively. The bands capture distinct 
characteristics of water body components, which 
can be attributed to their interactions with sunlight. 
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These interactions are generally described using 
empirical models that relate observed reflectance 
values to optical component (such as chlorophyll-a, 
total suspended matter, and colored dissolved 
organic matter) concentrations, which can be 
indicators of salinity changes in estuaries. The 
Level-2A product (Sentinel-2 MPC Team, 2021, 
Version 2.10), denoting atmospherically corrected 
bottom-of-atmosphere reflectance, was used in this 
case. The tile numbers encompassing the PRE are 
T49QGF and T49QGE.

Data Processing
The intricate hydrodynamics of the PRE, 

influenced by numerous estuarine outlets, 
seasonal variations, and tidal rhythms, lead to 
dynamic changes in interrelated water quality 
parameters. Conventional statistical models, 
whether the simple linear regression or the 
multivariate nonlinear regression, face challenges 
in generalizing ESS distribution. Drawing from prior 
studies (Urquhart et al., 2017; Zhang et al., 2020; 
He et al., 2021), a backpropagation (BP) neural 
network model was implemented to establish a 
remote sensing model for surface salinity in the 
PRE. The input data is structured as follows.

(1) Water Reflectance

Based on the site locations, the reflectance 
values of corresponding water pixels were 
extracted from remote sensing images. The 
latitude/longitude of the PRE corresponds to 

approximately 28.5m per second, equivalent to 
around three pixels in 10m resolution satellite 
images. Considering geometric errors in image 
registration, the average of the 3x3 neighborhood 
pixels around the center pixel is considered the 
synchronous water reflectance value for each 
salinity station. Sentinel-2 B2, B3, B4, and B8 
band reflectance (denoted as X1, X2, X3, and X4) 
is utilized. Considering the dynamic nature of 
the estuary’s waters, which can change rapidly 
due to various environmental influences, the 
following criteria are used to control the spectral 
data quality, ensuring that the optical properties 
of estuarine water pixels are maintained and the 
impact of poor imaging conditions (such as clouds 
or shadows) is minimized: 

a) Maintain the reflectance characteristic of 
typical water spectra. For clean water, as shown 
in point #1 of Figure 2, the minimum reflectance 
should be in band B8, while the reflectance in 
band B3 is higher than that in band B4 (B3>B4). 
Conversely, for high-suspended sediment water, 
as demonstrated by point #2, the conditions are 
reversed, with a minimum reflectance in band B8 
and higher reflectance in band B4 compared to 
band B3 (B4>B3).

b) Remove water pixels reflectance with 
excessively high values (>0.3) in all bands to 
eliminate cloud interference, as shown in point #3.

c) Exclude data with maximum reflectance of 
less than 0.05 to dispose of water pixels obscured 
by cloud shadows, as illustrated by point #4.

Figure 2. Water surface pixel distribution and spectral characteristics in Sentinel-2 images. Left: Distribution of four typical 
water surface pixels in the image; Right: Corresponding spectral curves, illustrating reflectance values across various bands.



Estuarine salinity via Sentinel-2 in PRE

Ocean and Coastal Research 2025, v73:e25016 4

Feng and He

(2) Geodetic Coordinates of Survey Sites

The ESS spatial distribution generally shows 
lower salinity levels than the open sea. Therefore, 
the geodetic coordinates of survey sites are 
incorporated as another set of input data in 
the modeling, represented as X5 (longitude) 
and X6 (latitude), respectively. The data unit is 
degrees (º) in decimal format with precision to 
six decimal places.

(3) Image Dates

The ESS is influenced by upstream runoff 
and tidal currents, displaying seasonal variations 
with higher salinity in dry seasons and lower 
salinity in flood seasons, as well as tidal variations 
with higher salinity during flood tides and lower 
salinity during ebb tides. Hence, the date of 
the satellite image is included as an additional 
input parameter, designated X7. To unify date 
formats, the month (MM) and day (DD) in X7 are 
converted to numerical values, as in Eq. (1), in 
which LD is total days in that month. For example, 
for January 1, 2022, omitting the year, MM is 1, 
DD is 1, LD is 31; thus, X7 is 1.03258.

X7=MM+DD/LD          (1)

(4) Salinity Data

Salinity data corresponding to satellite image 
times were gathered from the long-term station 
series and East River estuary stations. In alignment 
with the sensing time, data collected at 11:00 am 
were used to construct the ESS remote sensing 
model. The field salinity data with a two-hour 
interval in the PRE were linearly interpolated to 
11:00 am to facilitate model validation.

Model Structure
The BP neural network model is structured 

with an input layer, a hidden layer, and an output 
layer. The input layer includes spectral, temporal, 
and geographic information, with 90% of data 
randomly selected for training while the rest is used 
to assess network generalization and terminate 
training once generalization performance ceases 
to improve. The hidden layer is configured with 
10 neurons, utilizing the sigmoid function as the 
activation function. The output layer comprises 

a single node, employing the linear function as 
the activation function to map the output result. 
The Levenberg–Marquardt algorithm (Hagan 
and Menhaj, 1994) is used to train neural 
networks. This optimization technique offers 
several advantages, including significantly faster 
convergence rates, typically 10–100 times faster 
than the usual gradient descent backpropagation 
method, while also providing improved stability, 
reducing the risk of overfitting.

Furthermore, six sets of input parameters are 
devised for modeling and accuracy assessment, 
considering the specific characteristics of remote 
sensing estimation of surface salinity in estuaries:

(1) Spectral Data

Band ratios can reduce interference from 
external factors in remote sensing of water color 
parameters (Cao et al., 2017). This is because 
common external factors, such as atmospheric 
conditions, sunlight angle, and water surface 
reflection, affect all bands similarly. By selecting 
bands sensitive to target parameters and dividing 
them by less affected bands, the contrast between 
the target signal and background noise can be 
enhanced. Therefore, three spectral combinations, 
namely, original reflectance data (N1), band 
ratio (N2), and normalization (N3), are used for 
modeling to evaluate applicability.

N1, Xi = Bi

N2, Xi = Bi / B8              (2)
N3, Xi = (Bi - B8) / (MAX – B8)

In Eq. (2), Xi represents the input parameters 
X1 to X4, Bi represents the four 10m Sentinel-2 
bands (B2, B3, B4, B8), and MAX is the maximum 
reflectance value of the four bands. Combination 
N1 includes four spectral input parameters, while 
N2 and N3 include three.

(2) Temporal Data

Estuarine tides are classified as spring, neap, 
and low tides. According to the lunar calendar, spring 
tides typically occur around the 1st/15th of each lunar 
month, while neap tides occur around the 7th/23rd. 
The intensity of tides influences upstream saltwater 
intrusion. Two date input sets, the Gregorian and 
Lunar calendars, are employed for the analysis.
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Hence, six input sets are devised for the neural 
network model (Table 1). Among them, N1G 
includes four single-band spectra, Gregorian date, 
and longitude-latitude; N1L comprises four single-
band spectra, Lunar date, and longitude-latitude; 
and so forth.

(3) Accuracy Evaluation

The model’s training and validation accuracy 
are assessed using the root mean square error 
(RMSE) and the coefficient of determination (R2).

Table 1. Data combinations of input layers

Combination 
Code

Spectral 
Code

Geodetic 
Coordinates

Calendar 
System

N1G
N1

Longitude 
and Latitude

Gregorian 

N1L Lunar

N2G
N2 

Gregorian 

N2L Lunar

N3G
N3 

Gregorian 

N3L Lunar 

RESULTS
Evaluation of Various Input Parameter 
Combinations

The BP neural network model produces 
distinct results and accuracies, despite having 
fixed model structure and parameters. This is 
due to inherent randomness in training processes 
and variability introduced by data splitting and 
sampling techniques. For instance, selecting 
different subsets (e.g., 90% versus another 90%) 
of the same dataset for training can yield dissimilar 
models. Moreover, stochastic gradient descent 
and other optimization algorithms may introduce 
additional randomness, causing slight variations 
in weight updates during each iteration, ultimately 
leading to distinct converged solutions. To ensure 
the model’s ability to generalize beyond the training 
data, each input set generates 1,000 models 
using 90% of the training samples at random. 
Model accuracy statistics are detailed in Tables 2 
and 3. Data denoted by an asterisk (*) represent 
the optimal values within the statistical measures.

Table 2. The model R2 statistics after numerous trainings with different input parameters

N1G N1L N2G N2L N3G N3L

Mean 0.648 0.665 0.708 0.717* 0.616 0.650

Standard Deviation 0.616 0.547 0.367* 0.576 0.637 0.445

Median 0.815 0.815 0.809 0.819* 0.751 0.751

Maximum 0.951* 0.950 0.935 0.941 0.939 0.938

Minimum -9.701 -5.026 -4.238 -15.337 -7.555 -7.648

Proportion of R2>0.8 (%) 53.9 53.5 52.2 56.7* 36.7 36.7

Proportion of negative values (%) 6 5.3 3.4 2.5* 5.3 4.8

Data marked with an asterisk (*) indicate optimal values among the statistical measures.

Table 3. The RMSE model statistics after numerous trainings with different input parameters

N1G N1L N2G N2L N3G N3L

Mean 2.642 2.622 2.660 2.596* 2.886 2.845

Standard Deviation 0.903 0.904 0.998 0.742* 1.189 0.754

Median 2.393* 2.415 2.440 2.397 2.703 2.731

Maximum 7.981 8.670 20.485 7.933 26.647 6.547*

Minimum 1.326* 1.365 1.519 1.481 1.469 1.513

Data marked with an asterisk (*) indicate optimal values among the statistical measures.
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For R2, N2L has the highest mean, median, 
R2>0.8 proportion, and lowest negative proportion 
indicating overfitting. The peak R2 value is 0.941, 
marginally below that of N1G’s 0.951. For RMSE, N2L 
has the lowest mean and standard deviation, with a 
2.397 median slightly higher than N1G’s 2.393, and 
a 1.481 minimum slightly higher than N1G’s 1.326.

Consequently, N2L, characterized by band ratio 
spectra, Lunar date, and longitude-latitude coordinates, 
is chosen due to its robust overall stability to develop 
the PRE’s surface salinity remote sensing model.

Field Measurement Validation
Among the N2L models with higher R2 values 

(Figure 3, column 1), all modeling R2 values 

surpass 0.85. Scatterplots reveal a relatively high 
accuracy ranging from 5 to 35 PSU. However, 
within the 0–5 PSU range, the salinity values show 
a highly variable distribution, which results in lower 
model validation accuracy due to the scattered 
data points.

Additional validation is performed using 
measurements from January 5, 2020, alongside 
corresponding imagery from the same day. An 
R2 value of 0.916 for N2L-3 (Figure 3, column 2) 
outperforms the values of 0.840 for N2L-2 and 
0.792 for N2L-1. Therefore, N2L-3, demonstrating 
superior validation accuracy, is chosen for ESS 
estimation of the PRE.

Figure 3. Comparison of estimated salinity values to measured data. The left panel shows model perfor-
mance on training data; the right panel shows validation performance on independently validated datasets.
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Remote sensing analysis of ESS 
distribution in the PRE

Satellite images with minimal cloud interference 
are chosen for both flood and ebb tides, guided 

by north-south tidal levels from four stations 
(Huangpu, Hengmen, Jiuzhou Port, Dawanshan), 
as shown in Figure 4. The ESS distribution for the 
corresponding date is depicted in Figure 5.

Figure 4. Tide curves for each tidal station at respective imaging times. Location information for the four tidal 
stations (blue: Huangpu, orange: Hengmen, gray: Jiuzhou Port, yellow: Dawanshan) can be found in Figure 1.

Generally, the ESS within the PRE shows 
a gradient with higher salinity in the southern 
regions decreasing towards northern areas and 
progressively diminishing from the open sea 
to the upstream river mouths. Various spatial 
distribution patterns emerge:

(1) During flood tides (Figure 5, first row: Dec. 5, 
2020; Feb. 18, 2021; Apr. 4, 2022), tidal dynamics 
dominate the estuary. High-salinity eastern water 
intrudes and pushes upstream along deep river 
mouth channels, resulting in northward tongue-
shaped salinity contours. Salinities in the eastern 

and central deep channels typically exceed those on 
the western shores. Salinity concentrations ranging 
from 3 to 6 PSU commonly extend to the Pearl River 
Front Channel and the East River North Branch.

(2) During ebb tides (Figure 5, second row: 
Jan. 5, 2020; Nov. 30, 2021; Dec. 30, 2022), 
downstream discharge dynamics dominate the 
estuary. Adjacent regions such as eastern Humen 
and western Jiaomen, along with Hongqimen, 
Hengmen, and Modaomen, become dominated 
by freshwater, with low-salinity outflows from 
upstream channels beyond the river mouths.
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Figure 5. Sentinel-2 retrieval of ESS in the PRE at six different imaging times. Non-water pixels are excluded (white area). 
A color gradient from low (blue) to high (red), representing salinity values, is shown with a detailed distribution.

The obtained results above reveal that the 
remote sensing estimated salinity in the PRE 
exhibits significant spatial variability. To further 
visualize and quantify these errors, bias and 
RMSE maps for flood tides, ebb tides, and overall 
tidal periods are produced as shown in Figure 
6. The first row of maps (Figure 6a to Figure 
6c) depicts the bias, showing a positive bias 
(overestimation) in the salinity on the west coast 
of the estuary and upstream of Hengmen, with 
values ranging from 0 to 1 PSU during both flood 
and ebb tides. In contrast, the downstream open 

waters of the estuary exhibit a negative bias, with 
values ranging from -1 to -2 PSU.

The second row (Figure 6d to Figure 6f) 
represents the RMSE, which indicates that the 
overall riverine portion of the estuary exhibits an 
average error below 1.5 PSU. However, a slightly 
higher RMSE (1.5–2 PSU) is observed in the 
water body extending from northeast to southwest 
downstream of the PRE. This increased uncertainty 
may be attributed to two factors: the relatively 
sparse training data in this region and the complex 
interactions between freshwater input from rivers 
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and ocean currents. Furthermore, during high tide, 
the bias and RMSE values are indeed higher than 
those observed during low tide. This might be 
due to the increased mixing of waters during high 
tide, leading to a more pronounced exchange of 
water between the river and the ocean. As a result, 

the remote-sensing estimated salinity may not 
accurately capture this dynamic process, resulting 
in larger errors. In contrast, during ebbing, the 
estuary’s water outflow tends to create more 
uniform salinity conditions, which leads to lower 
biases and errors in remote-sensing estimates.

Figure 6. Bias and RMSE maps of ESS estimated by remote sensing in the PRE. The top row shows the bias, with overestima-
tion indicated by a blue-green color gradient and underestimation indicated by a yellow-red gradient. The bottom row illustrates 
the RMSE, with higher errors depicted in red and lower errors shown in blue.

DISCUSSION
By optimizing the input parameters, a practical 

algorithm for ESS estimation from Sentinel-2 
imagery was proposed and applied to the PRE, a 

region notable for its high salinity variability resulting 
from the intricate ocean-estuary-runoff interaction.

Estuaries, where freshwater rivers meet 
the ocean, are among the most productive and 
biodiverse ecosystems on Earth. They are also 
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highly vulnerable to human impacts, including 
land use changes, pollution, and climate-driven 
alterations in ocean circulation patterns. This is 
particularly true for estuaries like the PRE, whose 
unique geography, with its complex network of 
rivers, tidal flats, and mangrove forests, makes 
it especially susceptible to human activities 
and climate change impacts. To address these 
challenges, it is essential to develop accurate 
and effective monitoring strategies that can keep 
up with the complexity and variability of estuarine 
systems. This includes integrating data from 
multiple sources, such as satellite imagery, sensor 
networks, and hydrological models, to provide 
a comprehensive understanding of the PRE’s 
hydrodynamics and water quality, and the impacts 
of human activities on these processes.

Data analysis indicates that the PRE will 
experience low water flow from 2019 to 2028, 
a condition expected to intensify tidal intrusion 
(Yang et al., 2021). It poses a significant threat to 
the water supply security of coastal cities in the 
GBA and the ecological balance of the Pearl River 
Delta. Notably, the East River Delta of the PRE 
had a record-breaking saltwater intrusion during 
the dry season of 2021-2022, aligning with this 
predicted trend (Yang et al., 2023). This study aims 
to accomplish spatially continuous observation 
of water salinity in the PRE. To this end, satellite 
remote sensing technology distinguished by 
its expansive coverage and spatial continuity 
was chosen as the primary monitoring method. 
Despite the fact that Sentinel-2 has fewer spectral 
bands and broader spectral ranges compared to 
conventionally utilized ocean color satellites, the 
higher spatial resolution enhances its suitability 
for monitoring estuarine salt intrusion, thereby 
increasing the effectiveness of remote sensing. 
Although there is a disparity when juxtaposed 
against satellite data, even with enhanced 
resolution, Sentinel-2’s extensive coverage area 
(requiring merely two tiles to encompass the PRE 
region), coupled with the advantage of being freely 
accessible, led to our decision to adopt it as the 
primary data source.

During this process, however, we encountered 
an inevitable challenge: the lack of spectral 
response from water surface salinity, which cannot 

be directly inverted with optical remote sensing 
data. In past research, two typical approaches 
were adopted. One involved identifying water color 
parameters sensitive to salinity, thus obtaining 
salinity indirectly; the other entailed utilizing 
algorithms such as regression analysis, decision 
trees, neural networks, etc., to construct empirical 
models linking water surface salinity with various 
spectral combinations, selecting the model with 
the highest R² as the definitive salinity remote 
sensing model. 

In the former approach, techniques have 
evolved from relying on a singular sensitive factor 
to applying multiple sensitive factors. Taking the 
PRE as an example, Chen et al. (2004) used 
colored dissolved organic matter (CDOM) as 
an indicator for salinity sensitivity, similar to 
other estuaries in Asia (Sasaki, et al., 2008), 
the Americas (Palacios et al., 2009) and Europe 
(Binding and Bowers, 2003). In high-salinity waters 
far from the shore, CDOM typically dominates the 
water body’s spectrum. However, when using 
the model in nearshore waters, where salinity 
gradients change significantly, the optical effects 
of other water components, such as suspended 
particles and chlorophyll, are often overlooked, 
which can lead to inconsistencies in the model 
results. More recently, He et al. (2020) suggested 
using suspended particulate matter during the 
flood season and the permanganate index and 
chlorophyll during the dry season. Nevertheless, 
fluctuations in proxy parameters frequently result 
in discontinuities within the spatial distribution of 
the salinity inversion results, hindering accurate 
comprehension of the salinity dynamics in other 
PRE regions.

In the latter approach, current investigations 
typically confine their scope to single-outlet 
estuaries, as shown by Jiang et al. (2024) focusing 
on the Modaomen of the PRE. Since simple 
linear or nonlinear equations are insufficient to 
describe the complex salinity distribution in multi-
outlet estuaries, most researchers opt for neural 
networks. However, even with these advanced 
models, significant challenges arise from complex 
hydrodynamic factors (including tidal interactions, 
flooding and drying cycles, and a dense river 
network) and human activities. When relying 
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solely on spectral information for surface salinity 
retrieval, significant errors may arise between 
retrieved and actual salinity values.

After analyzing the spatial distribution of 
the ESS, we discerned the basic pattern of 
salinity gradually decreasing from the estuary 
to the sea. Based on this revelation, we aimed 
to incorporate geographic information (i.e., 
the longitude and latitude of image pixels) as 
one of the input parameters, along with image 
spectral data for the ESS inversion. Ensuing 
model training and validation, we achieved high 
accuracy and obtained more uniform outcomes 
of salinity inversion.

Apart from spatial distribution traits, 
estuarine salinity is also subject to fluctuations 
in upstream water discharge from each 
estuary mouth, exhibiting temporal distribution 
attributes. To enhance the model’s practicality, 
we used the imaging date of the remote sensing 
images as another important parameter to 
reflect changes in upstream water flow and 
incorporated it into the model construction. The 
results displayed in Figure 5 also show that the 
model can capture the temporal variations in 
water surface salinity.

However, when constructing remote sensing 
models, it is crucial to acknowledge the fundamental 
distinction between site measurements and remote 
sensing images, namely, the difference between 
a point and an area. A point refers to a limited 
observational perspective yet with increased 
precision, whereas an area denotes a more 
expansive view that includes additional details or 
anomalies. Precisely due to this distinction, the 
process of model construction and analysis still 
has limitations and areas for improvement:

(1) Including geodetic coordinates enhances 
model physical mechanisms and accuracy, but may 
also cause overfitting. For example, N1G has the 
highest R2 according to Table 2, but N1G-01 and 
N1G-02 with ~0.95 R2 yield unreasonable results. 
As shown in Figure 6, abnormal 15–20 PSU in 
the Lingdingyang or negative upstream salinity 
on Jan. 5, 2020; N1G-02 also shows unrealistic 
phenomena like Modaomen high salinity upward 
movement and sudden Lingdingyang decrease. 
Future improvements could expand synchronized 

measurements for uniform estuary distribution, 
and refine input parameter weighting of neural 
network models.

(2) ESS distribution is significantly influenced 
by tides and upstream inflows. Figure 8 shows 
a comprehensive overview of this phenomenon 
based on salinity monitoring stations located 
near the Modaomen in the downstream PRE. 
Figure 8a shows the tide level curves and 
corresponding salinity over a three-day period 
during a particularly severe saltwater intrusion in 
the winter of 2020. Figure 8b provides a scatter 
plot of tide levels versus salinity during the same 
period. These figures reveal a positive correlation 
between tide levels and salinity, suggesting that, 
as the tide rises, high-salinity water from the sea 
intrudes upstream, increasing regional water 
salinity. During this period, the upstream West 
River flow was relatively low (approximately 
3,200 m³/s), weakening the influence of river 
discharge on the regional hydrodynamic 
environment. In contrast, Figure 8c depicts the 
tidal level and corresponding salinity during 
the flood season of the following year (2021), 
when the upstream West River discharge was 
significantly higher (around 14,800 m³/s). As 
expected, the impact of river runoff on local 
hydrodynamic conditions far surpassed that 
of tidal forces, leading to a notable decrease 
in water salinity and a weakened correlation 
between salinity and tide levels. Figure 9 
presents data from Humen upstream during a 
severe saltwater intrusion at the end of 2021. 
Compared to Modaomen, the correlation 
between tidal level and salinity has increased 
significantly and exhibits a nonlinear relationship. 
This highlights the significant impact of both tidal 
cycles and river runoff on regional water salinity 
and underscores the spatial variability in salinity 
distribution within this complex estuary. To 
balance the mechanism and the practicality of 
remote sensing models, this study reduced input 
sources and used remote sensing image dates 
to represent estuary seasons and tides, which 
has certain limitations. Future improvements 
could incorporate upstream river flow data, like 
the West and East Rivers, to further enhance 
model accuracy and robustness.
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Figure 7. Relationship between tide levels and salinity of the Modaomen in the downstream PRE. The top row shows the rela-
tionship over a three-day period during saltwater intrusion in the winter of 2020 by comparing tide level curves with concurrent 
salinity (a), and the corresponding scatter plot (b). The bottom row depicts the varied relationship during flood season in the 
following year by curves comparison (c) and scatter plot (d).

Figure 8. Relationship between tide levels and salinity of Humen in the upstream PRE during Saltwater Intrusion Events. The 
left plot (a) shows that the correlation between tidal level and salinity has increased significantly, while the right plot (b) exhibits 
a nonlinear relationship compared to Modaomen areas.

CONCLUSIONS
This study utilizes extensive historical imagery 

and synchronized salinity measurement to 
construct a neural network-based remote sensing 

method for ESS applicable to Sentinel-2 imagery. 
The neural network model demonstrates strong 
nonlinear fitting capabilities, achieving effective 
inversion in the PRE with complex tidal-river 
interaction and multi-gate hydrology. The ESS 
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in the PRE exhibits higher southern and lower 
northern spatial patterns, with outer estuary 
areas higher than inner ones, influenced by tidal 
dynamics. Incorporating longitude/latitude for 
spatial information and dates for tidal information 
enhances the ESS model’s physical mechanism. 
Spectral processing, like near-infrared correction 
and band ratios, further improves model precision 
and stability. The inversion revealed high-salinity 
seawater coming from the eastern channel during 
flood tides, gradually merging upstream with 
freshwater. Low-salinity masses reached the 
Front Channel of the Pearl River and the North 
Branch of the East River. During ebb tides, due to 
downstream runoff, the low-salinity mass surged 
outwards, primarily retreating eastward to Humen.
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