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ABSTRACT

Optical remote sensing for estuarine surface salinity relies on correlation with water color parameters, facing
limitations in spectra, resolution, and hydrodynamics, particularly in multi-outlet estuaries. In this study,
Sentinel-2 images with 10m resolution were selected, and geographic coordinates, imaging date and band
combinations were incorporated as inputs for a neural network model to capture spatiotemporal salinity
distribution. By repeatedly constructing the model with varied inputs to mitigate the impact of input sample
variations and ensure robustness, the final model, N2L-3, achieved high accuracy (R? = 0.916 and overall RMSE
below 1.5 PSU) and was chosen to estimate the estuarine surface salinity in the Pearl River Estuary. Our
results revealed high-salinity offshore water intruding the eastern estuary channel during flood tides, gradually
merging upstream with freshwater. Low-salinity water reached the Pearl River Front Channel and East River
North Branch. During ebb tides, due to estuarine outflows, low-salinity water spread through river mouths and
shifted eastward near Humen.
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INTRODUCTION large areas compared to in situ measurements
and model-derived reanalysis data (Kim et al.,
2023). L-band (1.4 GHz) passive microwave
radiometers estimates sea surface salinity based
on the relationship between the dielectric constant
of seawater and brightness temperature (Zhou
et al.,, 2017; Reul et al., 2020; Taillade et al.,
2023). However, low spatial resolution (Wang
et al.,, 2019) and radio frequency interference

Estuaries are highly productive and biodiverse
ecosystems, being particularly vulnerable to human
impacts. Given their complexity and variability,
effective monitoring demands high-resolution data.
In these dynamic environments, the interaction
between river and ocean waters creates a unique
interplay of ecological processes, which require
precise salt monitoring to ensure coastal water

supply and ecological surveillance (Zhang et al., (Kolodziejczyk et al., 2016) reduce applicability
2010). Satellites can provide spatiotemporally in e'stuarles _W'th high salinity dynamics due to
continuous monitoring of water surface salinity in the intersection of freshwater and seawater. To

address these limitations, ocean color satellites
are used to estimate estuarine salinity via proxy
water parameters (e.g., colored dissolved
organic matter, suspended particulate matter)
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et al., 2012; Chen and Hu, 2017; Liu et al., 2017;
Nakada et al., 2018; Zhang et al., 2023). However,
the empirical nature of salinity models based on
ocean color satellites leads to regional differences
in their formulation and in the water quality
parameters used. Additionally, optical sensors with
multiple water color bands lack sufficient spatial
resolution (e.g., MODIS-Aqua, 250m; Sentinel-3
OLCI, 300m), which hinders the monitoring of
upstream channels. Although higher-resolution
land satellites may fill data gaps for estuarine
salinity monitoring, their broad spectral bands
attenuate reflective characteristics of water quality
parameters. Furthermore, image preprocessing
is complicated by factors such as wind fields and
imaging angles, amplifying noise information
like water surface ripples, thus impacting the
effectiveness of model operations. Therefore, it is
difficult to apply statistical models to a compound
estuary with multiple outlets and channels, such
as the Pearl River Estuary (PRE). Neural networks
are more suitable for this scenario due to their
nonlinear fitting abilities (Urqubhart et al., 2012;
Zhang et al., 2023).

This paper aims to investigate the feasibility
of retrieving estuarine surface salinity (ESS)
using medium-high resolution images, such
as Sentinel-2. By optimizing input parameters,
a practical method was developed, with the
evaluation of in situ measurements in the PRE.
The study area and the involved data are outlined
in Section 2. The proposed method is described in
Section 3. The validation of models and the ESS
distribution in the PRE are presented in Section 4.
Section 5 discusses the findings and implications
for further research.

METHODS
STUDY AREA AND DATA DESCRIPTION

The PRE is located in southern China and is the
central area of the Guangdong-Hong Kong-Macao
Greater Bay Area (GBA). It is a fan-shaped region
formed by the confluence of the West River, the
North River, the East River, and eight mouths
(Figure 1). The complex mutual ocean-estuary-runoff
interaction leads to intricate hydrodynamics, resulting
in high variations of water salinity.

Estuarine salinity via Sentinel-2 in PRE

Figure 1. Distribution map of salinity and tidal stations in the
PRE. Black fonts represent the eight estuary outlets, blue
fonts indicate the main streams described in this study, and
orange fonts denote the tidal stations.

The measured salinity employed in this
study consists of three sets in Practical Salinity
Units %. (PSU): (1) long-term hourly salinity data
from 2015-2021 at 18 stations distributed in the
PRE; (2) hourly salinity data from Oct.-Dec. 2021
at 24 stations mainly distributed in the East River
Delta of the PRE; (3) salinity data with a two-hour
measurement interval at 17 ship survey sites
around the PRE from Dec. 28,2019 to Jan. 5, 2020.

The MSI (multi-spectral instrument) images
of Sentinel-2 spanning from 2015 to 2021 were
utilized, with an imaging frequency of 10 days per
scene prior to March 2017 (exclusive to Sentinel-2A)
and five days per scene thereafter (including
Sentinel-2A  and Sentinel-2B). The selected
bands—B2 (blue), B3 (green), B4 (red), and B8
(near-infrared)—offer a spatial resolution of 10m,
with center wavelengths of 490nm, 560nm, 665nm,
and 842nm, respectively. The bands capture distinct
characteristics of water body components, which
can be attributed to their interactions with sunlight.
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These interactions are generally described using
empirical models that relate observed reflectance
values to optical component (such as chlorophyll-a,
total suspended matter, and colored dissolved
organic matter) concentrations, which can be
indicators of salinity changes in estuaries. The
Level-2A product (Sentinel-2 MPC Team, 2021,
Version 2.10), denoting atmospherically corrected
bottom-of-atmosphere reflectance, was used in this
case. The tile numbers encompassing the PRE are
T49QGF and T49QGE.

DATA PROCESSING

The intricate hydrodynamics of the PRE,
influenced by numerous estuarine outlets,
seasonal variations, and tidal rhythms, lead to
dynamic changes in interrelated water quality
parameters. Conventional statistical models,
whether the simple linear regression or the
multivariate nonlinear regression, face challenges
in generalizing ESS distribution. Drawing from prior
studies (Urquhart et al., 2017; Zhang et al., 2020;
He et al., 2021), a backpropagation (BP) neural
network model was implemented to establish a
remote sensing model for surface salinity in the
PRE. The input data is structured as follows.

(1) Water Reflectance

Based on the site locations, the reflectance
values of corresponding water pixels were
extracted from remote sensing images. The
latitude/longitude of the PRE corresponds to
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approximately 28.5m per second, equivalent to
around three pixels in 10m resolution satellite
images. Considering geometric errors in image
registration, the average of the 3x3 neighborhood
pixels around the center pixel is considered the
synchronous water reflectance value for each
salinity station. Sentinel-2 B2, B3, B4, and B8
band reflectance (denoted as X;, X,, X;, and X,)
is utilized. Considering the dynamic nature of
the estuary’s waters, which can change rapidly
due to various environmental influences, the
following criteria are used to control the spectral
data quality, ensuring that the optical properties
of estuarine water pixels are maintained and the
impact of poor imaging conditions (such as clouds
or shadows) is minimized:

a) Maintain the reflectance characteristic of
typical water spectra. For clean water, as shown
in point #1 of Figure 2, the minimum reflectance
should be in band B8, while the reflectance in
band B3 is higher than that in band B4 (B3>B4).
Conversely, for high-suspended sediment water,
as demonstrated by point #2, the conditions are
reversed, with a minimum reflectance in band B8
and higher reflectance in band B4 compared to
band B3 (B4>B3).

b) Remove water pixels reflectance with
excessively high values (>0.3) in all bands to
eliminate cloud interference, as shown in point #3.

¢) Exclude data with maximum reflectance of
less than 0.05 to dispose of water pixels obscured
by cloud shadows, as illustrated by point #4.

Figure 2. Water surface pixel distribution and spectral characteristics in Sentinel-2 images. Left: Distribution of four typical
water surface pixels in the image; Right: Corresponding spectral curves, illustrating reflectance values across various bands.
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(2) Geodetic Coordinates of Survey Sites

The ESS spatial distribution generally shows
lower salinity levels than the open sea. Therefore,
the geodetic coordinates of survey sites are
incorporated as another set of input data in
the modeling, represented as X, (longitude)
and X, (latitude), respectively. The data unit is
degrees (°) in decimal format with precision to
six decimal places.

(3) Image Dates

The ESS is influenced by upstream runoff
and tidal currents, displaying seasonal variations
with higher salinity in dry seasons and lower
salinity in flood seasons, as well as tidal variations
with higher salinity during flood tides and lower
salinity during ebb tides. Hence, the date of
the satellite image is included as an additional
input parameter, designated X.. To unify date
formats, the month (MM) and day (DD) in X, are
converted to numerical values, as in Eq. (1), in
which LD is total days in that month. For example,
for January 1, 2022, omitting the year, MM is 1,
DDis 1, LD is 31; thus, X, is 1.03258.

X.=MM+DD/LD (1)
(4) Salinity Data

Salinity data corresponding to satellite image
times were gathered from the long-term station
series and East River estuary stations. In alignment
with the sensing time, data collected at 11:00 am
were used to construct the ESS remote sensing
model. The field salinity data with a two-hour
interval in the PRE were linearly interpolated to
11:00 am to facilitate model validation.

MoODEL STRUCTURE

The BP neural network model is structured
with an input layer, a hidden layer, and an output
layer. The input layer includes spectral, temporal,
and geographic information, with 90% of data
randomly selected for training while the rest is used
to assess network generalization and terminate
training once generalization performance ceases
to improve. The hidden layer is configured with
10 neurons, utilizing the sigmoid function as the
activation function. The output layer comprises
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a single node, employing the linear function as
the activation function to map the output result.
The Levenberg—Marquardt algorithm (Hagan
and Menhaj, 1994) is used to train neural
networks. This optimization technique offers
several advantages, including significantly faster
convergence rates, typically 10—100 times faster
than the usual gradient descent backpropagation
method, while also providing improved stability,
reducing the risk of overfitting.

Furthermore, six sets of input parameters are
devised for modeling and accuracy assessment,
considering the specific characteristics of remote
sensing estimation of surface salinity in estuaries:

(1) Spectral Data

Band ratios can reduce interference from
external factors in remote sensing of water color
parameters (Cao et al.,, 2017). This is because
common external factors, such as atmospheric
conditions, sunlight angle, and water surface
reflection, affect all bands similarly. By selecting
bands sensitive to target parameters and dividing
them by less affected bands, the contrast between
the target signal and background noise can be
enhanced. Therefore, three spectral combinations,
namely, original reflectance data (N1), band
ratio (N2), and normalization (N3), are used for
modeling to evaluate applicability.

N1, X =B
N2, X =B/B, @)
N3, X = (B,- B, / (MAX - B,)

In Eq. (2), X represents the input parameters
X, to X,, B, represents the four 10m Sentinel-2
bands (B2, B3, B4, B8), and MAX is the maximum
reflectance value of the four bands. Combination
N1 includes four spectral input parameters, while
N2 and N3 include three.

(2) Temporal Data

Estuarine tides are classified as spring, neap,
and low tides. According to the lunar calendar, spring
tides typically occur around the 1st/15th of each lunar
month, while neap tides occur around the 7th/23rd.
The intensity of tides influences upstream saltwater
intrusion. Two date input sets, the Gregorian and
Lunar calendars, are employed for the analysis.
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Hence, six input sets are devised for the neural
network model (Table 1). Among them, N1G
includes four single-band spectra, Gregorian date,
and longitude-latitude; N1L comprises four single-
band spectra, Lunar date, and longitude-latitude;

and so forth.

(3) Accuracy Evaluation

The model’s training and validation accuracy
are assessed using the root mean square error
(RMSE) and the coefficient of determination (R?).

Table 1. Data combinations of input layers

Combination  Spectral Geodetic Calendar
Code Code Coordinates System
N1G Gregorian
N1
N1L Lunar
N2G Longitude Gregorian
N2 -
N2L and Latitude Lunar
N3G Gregorian
N3
N3L Lunar

Estuarine salinity via Sentinel-2 in PRE

RESULTS

EvALUATION OF VARIOUS INPUT PARAMETER
COMBINATIONS

The BP neural network model produces
distinct results and accuracies, despite having
fixed model structure and parameters. This is
due to inherent randomness in training processes
and variability introduced by data splitting and
sampling techniques. For instance, selecting
different subsets (e.g., 90% versus another 90%)
of the same dataset for training can yield dissimilar
models. Moreover, stochastic gradient descent
and other optimization algorithms may introduce
additional randomness, causing slight variations
in weight updates during each iteration, ultimately
leading to distinct converged solutions. To ensure
the model’s ability to generalize beyond the training
data, each input set generates 1,000 models
using 90% of the training samples at random.
Model accuracy statistics are detailed in Tables 2
and 3. Data denoted by an asterisk (*) represent
the optimal values within the statistical measures.

Table 2. The model R? statistics after numerous trainings with different input parameters

N1G N1L N2G N2L N3G N3L
Mean 0.648 0.665 0.708 0.717* 0.616 0.650
Standard Deviation 0.616 0.547 0.367* 0.576 0.637 0.445
Median 0.815 0.815 0.809 0.819* 0.751 0.751
Maximum 0.951* 0.950 0.935 0.941 0.939 0.938
Minimum -9.701 -5.026 -4.238 -15.337 -7.555 -7.648
Proportion of R2>0.8 (%) 53.9 53.5 52.2 56.7¢ 36.7 36.7
Proportion of negative values (%) 6 5.3 3.4 2.5* 5.3 4.8

Data marked with an asterisk (*) indicate optimal values among the statistical measures.

Table 3. The RMSE model statistics after numerous trainings with different input parameters

N1G N1L N2G N2L N3G N3L
Mean 2.642 2.622 2.660 2.596* 2.886 2.845
Standard Deviation 0.903 0.904 0.998 0.742* 1.189 0.754
Median 2.393* 2.415 2.440 2.397 2.703 2.731
Maximum 7.981 8.670 20.485 7.933 26.647 6.547*
Minimum 1.326* 1.365 1.519 1.481 1.469 1.513

Data marked with an asterisk (*) indicate optimal values among the statistical measures.
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For R%, N2L has the highest mean, median,
R2>0.8 proportion, and lowest negative proportion
indicating overfitting. The peak R? value is 0.941,
marginally below that of N1G’s 0.951. For RMSE, N2L
has the lowest mean and standard deviation, with a
2.397 median slightly higher than N1G’s 2.393, and
a 1.481 minimum slightly higher than N1G’s 1.326.

Consequently, N2L, characterized by band ratio
spectra, Lunar date, and longitude-latitude coordinates,
is chosen due to its robust overall stability to develop
the PRE’s surface salinity remote sensing model.

FieELb MEASUREMENT VALIDATION

Among the N2L models with higher R? values
(Figure 3, column 1), all modeling R? values

Estuarine salinity via Sentinel-2 in PRE

surpass 0.85. Scatterplots reveal a relatively high
accuracy ranging from 5 to 35 PSU. However,
within the 0-5 PSU range, the salinity values show
a highly variable distribution, which results in lower
model validation accuracy due to the scattered
data points.

Additional validation is performed using
measurements from January 5, 2020, alongside
corresponding imagery from the same day. An
R? value of 0.916 for N2L-3 (Figure 3, column 2)
outperforms the values of 0.840 for N2L-2 and
0.792 for N2L-1. Therefore, N2L-3, demonstrating
superior validation accuracy, is chosen for ESS
estimation of the PRE.

Figure 3. Comparison of estimated salinity values to measured data. The left panel shows model perfor-
mance on training data; the right panel shows validation performance on independently validated datasets.

Ocean and Coastal Research 2025, v73:e25016 6
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REMOTE SENSING ANALYSIS OF ESS
DISTRIBUTION IN THE PRE

Satellite images with minimal cloud interference
are chosen for both flood and ebb tides, guided

Estuarine salinity via Sentinel-2 in PRE

by north-south tidal levels from four stations
(Huangpu, Hengmen, Jiuzhou Port, Dawanshan),
as shown in Figure 4. The ESS distribution for the
corresponding date is depicted in Figure 5.

Figure 4. Tide curves for each tidal station at respective imaging times. Location information for the four tidal
stations (blue: Huangpu, orange: Hengmen, gray: Jiuzhou Port, yellow: Dawanshan) can be found in Figure 1.

Generally, the ESS within the PRE shows
a gradient with higher salinity in the southern
regions decreasing towards northern areas and
progressively diminishing from the open sea
to the upstream river mouths. Various spatial
distribution patterns emerge:

(1) During flood tides (Figure 5, first row: Dec. 5,
2020; Feb. 18, 2021; Apr. 4, 2022), tidal dynamics
dominate the estuary. High-salinity eastern water
intrudes and pushes upstream along deep river
mouth channels, resulting in northward tongue-
shaped salinity contours. Salinities in the eastern

and central deep channels typically exceed those on
the western shores. Salinity concentrations ranging
from 3 to 6 PSU commonly extend to the Pearl River
Front Channel and the East River North Branch.

(2) During ebb tides (Figure 5, second row:
Jan. 5, 2020; Nov. 30, 2021; Dec. 30, 2022),
downstream discharge dynamics dominate the
estuary. Adjacent regions such as eastern Humen
and western Jiaomen, along with Honggimen,
Hengmen, and Modaomen, become dominated
by freshwater, with low-salinity outflows from
upstream channels beyond the river mouths.

Ocean and Coastal Research 2025, v73:e25016 7
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Figure 5. Sentinel-2 retrieval of ESS in the PRE at six different imaging times. Non-water pixels are excluded (white area).
A color gradient from low (blue) to high (red), representing salinity values, is shown with a detailed distribution.

The obtained results above reveal that the
remote sensing estimated salinity in the PRE
exhibits significant spatial variability. To further
visualize and quantify these errors, bias and
RMSE maps for flood tides, ebb tides, and overall
tidal periods are produced as shown in Figure
6. The first row of maps (Figure 6a to Figure
6c) depicts the bias, showing a positive bias
(overestimation) in the salinity on the west coast
of the estuary and upstream of Hengmen, with
values ranging from 0 to 1 PSU during both flood
and ebb tides. In contrast, the downstream open

waters of the estuary exhibit a negative bias, with
values ranging from -1 to -2 PSU.

The second row (Figure 6d to Figure 6f)
represents the RMSE, which indicates that the
overall riverine portion of the estuary exhibits an
average error below 1.5 PSU. However, a slightly
higher RMSE (1.5-2 PSU) is observed in the
water body extending from northeast to southwest
downstream of the PRE. This increased uncertainty
may be attributed to two factors: the relatively
sparse training data in this region and the complex
interactions between freshwater input from rivers

Ocean and Coastal Research 2025, v73:e25016 8
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and ocean currents. Furthermore, during high tide,
the bias and RMSE values are indeed higher than
those observed during low tide. This might be
due to the increased mixing of waters during high
tide, leading to a more pronounced exchange of
water between the river and the ocean. As a result,

Estuarine salinity via Sentinel-2 in PRE

the remote-sensing estimated salinity may not
accurately capture this dynamic process, resulting
in larger errors. In contrast, during ebbing, the
estuary’s water outflow tends to create more
uniform salinity conditions, which leads to lower
biases and errors in remote-sensing estimates.

Figure 6. Bias and RMSE maps of ESS estimated by remote sensing in the PRE. The top row shows the bias, with overestima-
tion indicated by a blue-green color gradient and underestimation indicated by a yellow-red gradient. The bottom row illustrates
the RMSE, with higher errors depicted in red and lower errors shown in blue.

DISCUSSION

By optimizing the input parameters, a practical
algorithm for ESS estimation from Sentinel-2
imagery was proposed and applied to the PRE, a

region notable for its high salinity variability resulting
from the intricate ocean-estuary-runoff interaction.

Estuaries, where freshwater rivers meet
the ocean, are among the most productive and
biodiverse ecosystems on Earth. They are also

Ocean and Coastal Research 2025, v73:e25016 9
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highly vulnerable to human impacts, including
land use changes, pollution, and climate-driven
alterations in ocean circulation patterns. This is
particularly true for estuaries like the PRE, whose
unique geography, with its complex network of
rivers, tidal flats, and mangrove forests, makes
it especially susceptible to human activities
and climate change impacts. To address these
challenges, it is essential to develop accurate
and effective monitoring strategies that can keep
up with the complexity and variability of estuarine
systems. This includes integrating data from
multiple sources, such as satellite imagery, sensor
networks, and hydrological models, to provide
a comprehensive understanding of the PRE’s
hydrodynamics and water quality, and the impacts
of human activities on these processes.

Data analysis indicates that the PRE will
experience low water flow from 2019 to 2028,
a condition expected to intensify tidal intrusion
(Yang et al., 2021). It poses a significant threat to
the water supply security of coastal cities in the
GBA and the ecological balance of the Pearl River
Delta. Notably, the East River Delta of the PRE
had a record-breaking saltwater intrusion during
the dry season of 2021-2022, aligning with this
predicted trend (Yang et al., 2023). This study aims
to accomplish spatially continuous observation
of water salinity in the PRE. To this end, satellite
remote sensing technology distinguished by
its expansive coverage and spatial continuity
was chosen as the primary monitoring method.
Despite the fact that Sentinel-2 has fewer spectral
bands and broader spectral ranges compared to
conventionally utilized ocean color satellites, the
higher spatial resolution enhances its suitability
for monitoring estuarine salt intrusion, thereby
increasing the effectiveness of remote sensing.
Although there is a disparity when juxtaposed
against satellite data, even with enhanced
resolution, Sentinel-2’s extensive coverage area
(requiring merely two tiles to encompass the PRE
region), coupled with the advantage of being freely
accessible, led to our decision to adopt it as the
primary data source.

During this process, however, we encountered
an inevitable challenge: the lack of spectral
response from water surface salinity, which cannot

Estuarine salinity via Sentinel-2 in PRE

be directly inverted with optical remote sensing
data. In past research, two typical approaches
were adopted. One involved identifying water color
parameters sensitive to salinity, thus obtaining
salinity indirectly; the other entailed utilizing
algorithms such as regression analysis, decision
trees, neural networks, etc., to construct empirical
models linking water surface salinity with various
spectral combinations, selecting the model with
the highest R? as the definitive salinity remote
sensing model.

In the former approach, techniques have
evolved from relying on a singular sensitive factor
to applying multiple sensitive factors. Taking the
PRE as an example, Chen et al. (2004) used
colored dissolved organic matter (CDOM) as
an indicator for salinity sensitivity, similar to
other estuaries in Asia (Sasaki, et al., 2008),
the Americas (Palacios et al., 2009) and Europe
(Binding and Bowers, 2003). In high-salinity waters
far from the shore, CDOM typically dominates the
water body’s spectrum. However, when using
the model in nearshore waters, where salinity
gradients change significantly, the optical effects
of other water components, such as suspended
particles and chlorophyll, are often overlooked,
which can lead to inconsistencies in the model
results. More recently, He et al. (2020) suggested
using suspended particulate matter during the
flood season and the permanganate index and
chlorophyll during the dry season. Nevertheless,
fluctuations in proxy parameters frequently result
in discontinuities within the spatial distribution of
the salinity inversion results, hindering accurate
comprehension of the salinity dynamics in other
PRE regions.

In the latter approach, current investigations
typically confine their scope to single-outlet
estuaries, as shown by Jiang et al. (2024) focusing
on the Modaomen of the PRE. Since simple
linear or nonlinear equations are insufficient to
describe the complex salinity distribution in multi-
outlet estuaries, most researchers opt for neural
networks. However, even with these advanced
models, significant challenges arise from complex
hydrodynamic factors (including tidal interactions,
flooding and drying cycles, and a dense river
network) and human activities. When relying

Ocean and Coastal Research 2025, v73:e25016 10
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solely on spectral information for surface salinity
retrieval, significant errors may arise between
retrieved and actual salinity values.

After analyzing the spatial distribution of
the ESS, we discerned the basic pattern of
salinity gradually decreasing from the estuary
to the sea. Based on this revelation, we aimed
to incorporate geographic information (i.e.,
the longitude and latitude of image pixels) as
one of the input parameters, along with image
spectral data for the ESS inversion. Ensuing
model training and validation, we achieved high
accuracy and obtained more uniform outcomes
of salinity inversion.

Apart from spatial distribution traits,
estuarine salinity is also subject to fluctuations
in upstream water discharge from each
estuary mouth, exhibiting temporal distribution
attributes. To enhance the model’s practicality,
we used the imaging date of the remote sensing
images as another important parameter to
reflect changes in upstream water flow and
incorporated it into the model construction. The
results displayed in Figure 5 also show that the
model can capture the temporal variations in
water surface salinity.

However, when constructing remote sensing
models, itis crucial to acknowledge the fundamental
distinction between site measurements and remote
sensing images, namely, the difference between
a point and an area. A point refers to a limited
observational perspective yet with increased
precision, whereas an area denotes a more
expansive view that includes additional details or
anomalies. Precisely due to this distinction, the
process of model construction and analysis still
has limitations and areas for improvement:

(1) Including geodetic coordinates enhances
model physical mechanisms and accuracy, but may
also cause overfitting. For example, N1G has the
highest R? according to Table 2, but N1G-01 and
N1G-02 with ~0.95 R? yield unreasonable results.
As shown in Figure 6, abnormal 15-20 PSU in
the Lingdingyang or negative upstream salinity
on Jan. 5, 2020; N1G-02 also shows unrealistic
phenomena like Modaomen high salinity upward
movement and sudden Lingdingyang decrease.
Future improvements could expand synchronized

Estuarine salinity via Sentinel-2 in PRE

measurements for uniform estuary distribution,
and refine input parameter weighting of neural
network models.

(2) ESS distribution is significantly influenced
by tides and upstream inflows. Figure 8 shows
a comprehensive overview of this phenomenon
based on salinity monitoring stations located
near the Modaomen in the downstream PRE.
Figure 8a shows the tide level curves and
corresponding salinity over a three-day period
during a particularly severe saltwater intrusion in
the winter of 2020. Figure 8b provides a scatter
plot of tide levels versus salinity during the same
period. These figures reveal a positive correlation
between tide levels and salinity, suggesting that,
as the tide rises, high-salinity water from the sea
intrudes upstream, increasing regional water
salinity. During this period, the upstream West
River flow was relatively low (approximately
3,200 m3/s), weakening the influence of river
discharge on the regional hydrodynamic
environment. In contrast, Figure 8c depicts the
tidal level and corresponding salinity during
the flood season of the following year (2021),
when the upstream West River discharge was
significantly higher (around 14,800 m3/s). As
expected, the impact of river runoff on local
hydrodynamic conditions far surpassed that
of tidal forces, leading to a notable decrease
in water salinity and a weakened correlation
between salinity and tide levels. Figure 9
presents data from Humen upstream during a
severe saltwater intrusion at the end of 2021.
Compared to Modaomen, the correlation
between tidal level and salinity has increased
significantly and exhibits a nonlinear relationship.
This highlights the significant impact of both tidal
cycles and river runoff on regional water salinity
and underscores the spatial variability in salinity
distribution within this complex estuary. To
balance the mechanism and the practicality of
remote sensing models, this study reduced input
sources and used remote sensing image dates
to represent estuary seasons and tides, which
has certain limitations. Future improvements
could incorporate upstream river flow data, like
the West and East Rivers, to further enhance
model accuracy and robustness.
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Figure 7. Relationship between tide levels and salinity of the Modaomen in the downstream PRE. The top row shows the rela-
tionship over a three-day period during saltwater intrusion in the winter of 2020 by comparing tide level curves with concurrent
salinity (a), and the corresponding scatter plot (b). The bottom row depicts the varied relationship during flood season in the
following year by curves comparison (c) and scatter plot (d).

Figure 8. Relationship between tide levels and salinity of Humen in the upstream PRE during Saltwater Intrusion Events. The
left plot (a) shows that the correlation between tidal level and salinity has increased significantly, while the right plot (b) exhibits
a nonlinear relationship compared to Modaomen areas.

CONCLUSIONS method for ESS applicable to Sentinel-2 imagery.
The neural network model demonstrates strong

This study utilizes extensive historical imagery nonlinear fitting capabilities, achieving effective
and synchronized salinity measurement to inversion in the PRE with complex tidal-river
construct a neural network-based remote sensing interaction and multi-gate hydrology. The ESS

Ocean and Coastal Research 2025, v73:e25016 12
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in the PRE exhibits higher southern and lower
northern spatial patterns, with outer estuary
areas higher than inner ones, influenced by tidal
dynamics. Incorporating longitude/latitude for
spatial information and dates for tidal information
enhances the ESS model’s physical mechanism.
Spectral processing, like near-infrared correction
and band ratios, further improves model precision
and stability. The inversion revealed high-salinity
seawater coming from the eastern channel during
flood tides, gradually merging upstream with
freshwater. Low-salinity masses reached the
Front Channel of the Pearl River and the North
Branch of the East River. During ebb tides, due to
downstream runoff, the low-salinity mass surged
outwards, primarily retreating eastward to Humen.
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