Sub-lethal predatory shell damage does not affect physiology under high CO2 in the intertidal gastropod Tritia reticulata
DOI:
https://doi.org/10.1590/S2675-28242020068274Keywords:
Ocean acidification, Metabolism, Intertidal, Gastropod, Shell repairAbstract
Ocean acidification (OA) poses a major threat to marine animals, especially marine shelled invertebrates such as molluscs. Although many organisms are capable of compensating for the effects of OA, this can impose physiological costs and impact performance (e.g. through increased metabolism and decreased growth). Sublethal injuries on shells may provoke changes in energy allocation. Under acidified conditions, organisms would spend less energy on reproduction and somatic growth to repair the damage. Therefore, we analysed the physiological responses of the intertidal gastropod Tritia reticulata during shell regeneration under OA conditions. We simulated a sub-lethal predation event (a notch in the outer lip of the shell) and individuals were exposed to control (pH 8.08) and low pH scenarios (pH 7.88 and 7.65). After two months exposure, all individuals showed shell repair, with a full repair rate observed in 75% of individuals. Contrary to expectations, shell repair following sub-lethal damage and OA had no apparent impact on physiological state in terms of energy reserves (as measured by whole-animal Carbon/Nitrogen) or growth potential (as measured by whole-animal RNA:Protein and RNA:DNA ratios). As an intertidal organism, T. reticulata could be resilient to future global environmental change because of compensatory mechanisms that are inherent in intertidal animals, and may represent a robust species with which to study future scenarios of OA in temperate coastal ecosystems. However, unrestricted food availability during experiment could have played a role in the results and therefore food limitation should be considered in future studies regarding shell repair and metabolism under the effects of OA.
References
ADDADI, L., JOESTER, D., NUDELMAN, F. & WEINER, S. 2006. Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry, 12, 4, 981-
AMARAL, V., PENHA-LOPES, G. & PAULA, J. 2009. RNA/DNA ratio
of crabs as an indicator of mangrove habitat quality. Aquatic
Conservation: Marine and Freshwater Ecosystems, 19, S1, S56-
S62.
ANDERSON, A. J., MACKENZIE, F. T. & GATTUSO, J. P. 2011. Effects
of ocean acidification on benthic processes, organisms, and
ecosystems. In: GATTUSO, J. P. & HANSSON, L. (eds.), Ocean
Acidification. New York: Oxford University Press Inc.
BARROSO, C. M., MOREIRA, M. H. & RICHARDSON, C. A. 2005a.
Age and growth of Nassarius reticulatus in the Ria de Aveiro,
north-west Portugal. Journal of the Marine Biological Association of the United Kingdom, 85, 151-156.
BARROSO, C. M., NUNES, M., RICHARDSON, C. A. & MOREIRA, M.
H. 2005b. The gastropod statolith: a tool for determining
the age of Nassarius reticulatus. Marine Biology, 146, 6, 1139-
BENIASH, E., IVANINA, A., LIEB, N. S., KUROCHKIN, I. & SOKOLOVA,
I. M. 2010. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Marine Ecology Progress Series, 419, 95-108.
BIBBY, R., CLEALL-HARDING, P., RUNDLE, S., WIDDICOMBE, S. &
SPICER, J. 2007. Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biology Letters,
, 67-74.
BLUNDON, J. A. & VERMEIJ, G. J. 1983. Effect of shell repair on
shell strength in the gastropod Littorina irrorata. Marine Biology, 76, 41-45.
BUCKLEY, L. J., CALDARONE, E. M. & ONG, T. L. 1999. RNA-DNA
ratio and other nucleic acid-based indicators for growth and
condition of marine fishes. Hydrobiologia, 401, 265-277.
BRENNAND, H. S., SOARS, N., DWORJANYN, S. A., DAVIS, A. R. &
BYRNE, M. 2010. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE, 5, 6, e11372. DOI: https://
doi.org/10.1371/journal.pone.0011372
CALDEIRA, K. & WICKETT, M. E. 2003. Anthropogenic carbon and
ocean pH. Nature, 425, 365.
CATARINO, A. I., BAUWENS, M. & DUBOIS, P. 2012. Acid-base balance and metabolic response of the sea urchin Paracentrotus
lividus to different seawater pH and temperatures. Environmental Science and Pollution Research, 19, 6, 2344-2353.
CHATZINIKOLAOU, E., GRIGORIOU, P., KEKLIKOGLOU, K., FAULWETTER, S. & PAPAGEORGIOU, N. 2017. The combined effects
of reduced pH and elevated temperature on the shell density
of two gastropod species measured using micro-CT imaging.
ICES Journal of Marine Science, 74, 1135-1149.
CHATZINIKOLAOU, E. & RICHARDSON, C. A. 2007. Evaluating
growth and age of netted whelk Nassarius reticulatus (Gastropoda: Nassariidae) using statolith growth rings. Marine
Ecology Progress Series, 342, 163-176.
CHATZINIKOLAOU, E. & RICHARDSON, C. A. 2008. Population dynamics and growth of Nassariusreticulatus (Gastropoda: Nassariidae) in Rhosneigr (Anglesey, UK). Marine Biology, 153, 4,
-619.
CHÍCHARO, M.A. & CHÍCHARO, L. 2008. RNA:DNA ratio and other
nucleic acid derived indices in marine ecology. International
Journal of Molecular Sciences, 9, 8, 1453-1471.
COLEMAN, D. W., BYRNE, M. & DAVIS, A. R. 2014. Molluscs on acid:
gastropod shell repair and strength in acidifying oceans. Marine Ecology Progress Series, 509, 203-211.
COURTNEY, T., WESTFIELD, I. & RIES, J. B. 2013. CO2
-induced ocean
acidification impairs calcification in the tropical urchin Echinometra viridis. Journal of Experimental Marine Biology and
Ecology, 440, 169-175.
DAHLHOFF, E. P. 2004. Biochemical indicators of stress and metabolism: applications for marine ecological studies. Annual
Review of Physiology, 66, 1, 183-207.
DAY, E. G., BRANCH, G. M. & VILJOEN, C. 2000. How costly is molluscan shell erosion? A comparison of two patellid limpets
with contrasting shell structures. Journal of Experimental
Marine Biology and Ecology, 243, 2, 185-208.
DICKSON, A. G. & MILLERO, F. J. 1987. A comparison of the equilibrium-constants for the dissociation of carbonic-acid in
seawater media. Deep-Sea Research, 34, 10, 1733-1743.
DIETL, G. P. & ALEXANDER, R. R. 2009. Patterns of unsuccessful shell-crushing predation along a tidal gradient in two
geographically separated salt marshes. Marine Ecology, 30,
-124.
DONAZZOLO, R., DEGOBBIS, D., SFRISO, A., PAVONI, B. & ORIO,
A. A. 1989. Influence of Venice lagoon macrofauna on nutrient exchange at the sediment-water interface. The Science
of the Total Environment, 86, 3, 223-238.
DUPONT, S., HAVENHAND, J., THORNDYKE, W., PECK, L. &
THORNDYKE, M. 2008. Near-future level of CO2
-driven
ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Marine Ecology Progress Series, 373, 285-294.
FAGAN, K. A., KOOPS, M. A., ARTS, M. T. & POWER, M. M. 2011. Assessing the utility of C:N ratios for predicting lipid content
in fishes. Canadian Journal of Fisheries and Aquatic Sciences,
, 2, 374-385.
FERRON, A. & LEGGETT, W. C. 1994. An appraisal of condition
measures for marine fish larvae. Advances in Marine Biology,
, 217-303.
FINDLAY, H. S., WOOD, H. L., KENDALL, M. A., SPICER, J. I.,
TWITCHETT, R. J. & WIDDICOMBE, S. 2011. Comparing the
impact of high CO2
on calcium carbonate structures in different marine organisms. Marine Biology Research, 7, 6, 565-
FRASER, K. P. P. & ROGERS, A. D. 2007. Protein metabolism in
marine animals: the underlying mechanism of growth. Advances in Marine Biology, 52, 267-362.
GALINDO, L. A., PUILLANDRE, N., UTGE, J., LOZOUET, P. &
BOUCHET, P. 2016. The phylogeny and systematics of the
Nassariidae revisited (Gastropoda, Buccinoidea). Molecular
Phylogenetics and Evolution, 99, 337-353.
GAZEAU, F., PARKER, L. M., COMEAU, S., GATTUSO, J. P.,
O’CONNOR, W. A., MARTIN, S., PÖRTNER, H. O. & ROSS, P. M.
Impacts of ocean acidification on marine shelled molluscs. Marine Biology, 160, 2207-2245.
GELLER, J. B. 1990. Reproductive responses to shell damage by
the gastropod Nucella emarginata (Deshayes). Journal of Experimental Marine Biology and Ecology, 136, 77-87.
GUTOWSKA, M. A., PÖRTNER, H. O. & MELZNER, F. 2008. Growth
and calcification in the cephalopod Sepia officinalis under
elevated seawater pCO2
. Marine Ecology Progress Series, 373,
-309.
HARRIS, J. O. MAGUIRE, G. B., EDWARDS, S. J. & HINDRUM, S.
M. 1999. Effect of pH on growth rate, oxygen consumption rate, and histopathology of gill and kidney tissue for
juvenile greenlip abalone, Haliotis laevigata Donovan and
blacklip abalone, Haliotis rubra Leach. Journal of Shellfish
Research, 18, 611-619.
HARVEY, B. P., MCKEOWN, N. J., RASTRICK, S. P. S. BERTOLINI, C.,
FOGGO, A., GRAHAM, H., HALL-SPENCER, J. M., MILAZZO, M.,
SHAW, P. W., SMALL, D. P. & MOORE, P. J. 2016. Individual and
population-level responses to ocean acidification. Scientific
Reports, 6, 20194. DOI: https://doi.org/10.1038/srep20194
HOULIHAN, D. F., MATHERS, E. M. & FOSTER, A. R. 1993. Biochemical correlates of growth rate in fish. In: RANKIN, J. C.
& JENSEN, F. B. (eds.), Fish Ecophysiology. London: Chapman
and Hall.
IPCC (Intergovernmental Panel on Climate Change). 2013. Climate change 2013: The physical science basis. Summary for
policymakers. Working Group I Contribution to the IPCC Fifth
Assessment Report, viewed 27 Jun 2019, <http://www.ipcc.
ch>.
KIM, D. H., BAEK, J. M., LEE, J. H., KIM, B. R., YOON, S. J. & KIM, J.
H. 2011. Food effect on the diel variations and starvation of
the melania snail Semisulcospira gottschei using RNA/DNA
ratios. Fisheries and Aquatic Sciences, 14, 4, 411-416.
KROEKER, K. J., SANFORD, E., JELLISON, B. M. & GAYLORD, B.
Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on
coastal molluscs. Biological Bulletin, 226, 3, 211-222.
LANGER, G., NEHRKE, G., BAGGINI, C., RODOLFO-METALPA, R.,
HALL-SPENCER, J. M. & BIJMA, J. 2014. Limpets counteract
ocean acidification induced shell corrosion by thickening
of aragonitic shell layers. Biogeosciences, 11, 24, 7363-7368.
LEWIS, E. & WALLACE, D. W. R. 1998. Program developed for CO2
system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.
Oak Ridge, Tennessee: U.S. Department of Energy, viewed
Dia Mês ANO, <https://cdiac.esd.ornl.gov/oceans/co2rprt.
html>.
LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L. & RANDALL, R. J.
Protein measurement with the Folin phenol reagent.
Journal of Biological Chemistry, 193, 1, 265-275.
MAAS, A. E., WISHNER, K. F. & SEIBEL, B. A. 2012. The metabolic response of pteropods to acidification reflects natural CO2
-exposure in oxygen minimum zones. Biogeosciences, 9, 747-757.
MARCHANT, H. K., CALOSI, P. & SPICER, J. I. 2010. Short-term exposure to hypercapnia does not compromise feeding, acid–
base balance or respiration of Patella vulgata but surprisingly
is accompanied by radula damage. Journal of the Marine Biological Association of the United Kingdom, 90, 1379-1384.
MCCLINTOCK, J. B., ANGUS, R. A., MCDONALD, M. R., AMSLER, C.
D., CATLEDGE, S. A. & VOHRA, Y. K. 2009. Rapid dissolution
of shells of weakly calcified Antarctic benthic macro-organisms indicates high vulnerability to ocean acidification. Antarctic Science, 21, 5, 449-456.
MEHRBACH, C., CULBERSON, C. H., HAWLEY, J. E. & PYTKOWICXZ, R. M. 1973. Measurement of apparent dissociation
constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18, 897-907.
MEJBAUM, W. 1939. Über die bestimmung kleiner pentosemengen insbesondere in derivaten der adenylsaüre. Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie, 258, 117-120.
MELZNER, F., STANGE, P., TRÜBENBACH, K., THOMSEN, J., CASTIES,
I., PANKNIN, U., GORB, S. N. & GUTOWSKA, M. A. 2011. Food
supply and seawater pCO2
impact calcification and internal
shell dissolution in the blue mussel Mytilus edulis. PLoS One, 6,
, e24223. DOI: https://doi.org/10.1371/journal.pone.0024223
PARKER, L. M., ROSS, P. M., O’CONNOR, W. A., PÖRTNER, H. O.,
SCANES, E. & WRIGHT, J. M. 2013. Predicting the response
of molluscs to the impact of ocean acidification. Biology, 2,
, 651-692.
PIERROT, D., LEWIS, E. & WALLACE, D. W. R. 2006. MS Excel Program Developed for CO2
System Calculations. ORNL/CDIAC105a. Carbon Dioxide Information Analysis Center, Oak Ridge
National Laboratory. Oak Ridge, Tennessee: U.S. Department of Energy. DOI: https://doi.org/10.3334/CDIAC/otg.
CO2SYS_XLS_CDIAC105a
PROUM, S., HARLEY, C. D., STEELE, M. & MARSHALL, D. J. 2017.
Aerobic and behavioral flexibility allow estuarine gastropods to flourish in rapidly changing and extreme pH conditions. Marine Biology, 164, 1-14.
RODOLFO-METALPA, R., HOULBRÈQUE, F., TAMBUTTÉ, É., BOISSON, F., BAGGINI, C., PATTI, F. P., JEFFREE, R., FINE, M., FOGGO, A., GATTUSO, J. P. & HALL-SPENCER, J. M. 2011. Coral and
mollusc resistance to ocean acidification adversely affected
by warming. Nature Climate Change, 1, 308-312.
SANDERS, M. B., BEAN, T. P., HUTCHINSON, T. H. & LE QUESNE,
W. J. F. 2013. Juvenile king scallop, Pecten maximus, is potentially tolerant to low levels of ocean acidification when
food is unrestricted. PLoS ONE, 8, 9, e74118. DOI: https://doi.
org/10.1371/journal.pone.0074118
SCHACTER, G. R. & POLLACK, R. I. 1973. Simplified method for
quantitative assay of small amounts of protein in biologic
material. Analytical Biochemistry, 51, 2, 654-655.
SCHNEIDER, C.A., RASBAND, W.S. & ELICEIRI, K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods
, 671-675.
SHIRAYAMA, Y. & THORNTON, H. 2005. Effect of increased atmospheric CO2
on shallow water marine benthos. Journal of
Geophysical Research: Oceans, 110, C9, CO9S08. DOI: https://
doi.org/10.1029/2004jCO02618
SOKOLOVA, I. M., FREDERICH, M., BAGWE, R., LANNIG, G. & SUKHOTIN, A. A. 2012. Energy homeostasis as an integrative
tool for assessing limits of environmental stress tolerance
in aquatic invertebrates. Marine Environmental Research, 79,
-15.
STAFFORD, E. S., TYLER, C. L. & LEIGHTON, L. R. 2015. Gastropod
shell repair tracks predator abundance. Marine Ecology, 36,
, 1176-1184.
SUCKLING, C. C., CLARK, M. S., BEVERIDGE, C., BRUNNER, L.,
HUGHES, A. D., HARPER, E. M., COOK, E. J., DAVIES, A. J. &
PECK, L. S. 2014. Experimental influence of pH on the early
life-stages of sea urchins II: increasing parental exposure
gives rise to different responses. Invertebrate Reproduction
and Development, 58, 3, 161-175.
SUCKLING, C. C., CLARK, M. S., RICHARD, J., MORLEY, S. A.,
THORNE, M. A. S., HARPER, E. M. & PECK, L. S. 2015. Adult
acclimation to combined temperature and pH stressors
significantly enhances reproductive outcomes compared
to short-term exposures. Journal of Animal Ecology, 84, 3,
-784.
TALLMARK, B. 1980. Population dynamics of Nassarius reticulatus (Gastropods, Prosobranchia) in Gullmar Fjord, Sweden.
Marine Ecology Progress Series, 3, 51-62.
TATE, R. D., BENKENDORFF, K., LAH, R. A. & KELAHER, B. P. 2017.
Ocean acidification and warming impacts the nutritional
properties of the predatory whelk, Dicathais orbita. Journal
of Experimental Marine Biology and Ecology, 493, 7-13.
THOMSEN, J, CASTIES, I., PANSCH, C., KÖRTZINGER, A. & MELZNER, F. 2013. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field
experiments. Global Change Biology, 19, 4, 1017-1027.
THOMSEN, J. & MELZNER, F. 2010. Moderate seawater acidification does not elicit long-term metabolic depression in the
blue mussel Mytilus edulis. Marine Biology, 157, 12, 2667-
TURRA, A., DENADAI, M. R. & LEITE, F. P. P. 2005. Predation on
gastropods by shell-breaking crabs: effects on shell availability to hermit crabs. Marine Ecology Progress Series, 286,
, 279-291.
WATSON, S. A., PECK, L. S., TYLER, P. A., SOUTHGATE, P. C., TAN, K.
S., DAY, R. W. & MORLEY, S. A. 2012. Marine invertebrate skeleton size varies with latitude, temperature, and carbonate
saturation: implications for global change and ocean acidification. Global Change Biology, 18, 10, 3026-3038.
WHITELEY, N. M., SUCKLING, C. C., CIOTTI, B. J., BROWN, J., MCCARTHY, I. D., GIMENEZ, L., & HAUTON, C. 2018. Sensitivity
to near-future CO2
conditions in marine crabs depends on
their compensatory capacities for salinity change. Scientific
Reports, 8, 1, 15639.
WO, K. T., LAM, P. K. S. & WU, R. S. S. 1999. A comparison of
growth biomarkers for assessing sublethal effects of cadmium on a marine gastropod, Nassarius festivus. Marine Pollution Bulletin, 39, 1-12, 165-173.
WOOTTON, J. T., PFISTER, C. A. & FORESTER, J. D. 2008. Dynamic
patterns and ecological impacts of declining ocean pH in
a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences, 105, 48, 18848-18853.
ZHANG, H., CHEUNG, S. G. & SHIN, P. K. S. 2014. The larvae of
congeneric gastropods showed differential responses to
the combined effects of ocean acidification, temperature
and salinity. Marine Pollution Bulletin, 79, 1-2, 39-46.
ZHANG, H., SHIN, P. K. & CHEUNG, S. G. 2015. Physiological responses and scope for growth upon medium-term exposure to the combined effects of ocean acidification and
temperature in a subtidal scavenger Nassarius conoidalis.
Marine Environmental Research, 106, 1, 51-60.
ZHANG, H., SHIN, P. K. S. & CHEUNG, S. G. 2016. Physiological
responses and scope for growth in a marine scavenging
gastropod, Nassarius festivus (Powys, 1835), are affected
by salinity and temperature but not by ocean acidification.
ICES Journal of Marine Science, 73, 3, 814-824.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Ocean and Coastal Research
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.