Size-fractionated chitin contribution to seston, with linkages to the copepod Acartia
DOI:
https://doi.org/10.1590/S2675-28242020068299Keywords:
Chitin, Acartia tonsa, Organic matter, EstuaryAbstract
The main purpose of the present work was to determine chitin from experimental size-fractioned incubations of the copepod Acartia tonsa, considered one of the primary sources of chitin in the Bahía Blanca Estuary. Sampling was performed during the austral warm season at one station in 2014 and 2015. Field-collected females (200 individuals) and males (100 individuals) were incubated in 8 L containers in the laboratory simulating in situ environmental conditions of temperature and salinity for 72 hours. Chitin content was measured in different size fractions (20-60, 60-135 and ≥135 μm). Particulate organic matter and dry weight were also determined in the different size fractions. Highly agglutinated debris, pellets, and natural food (diatoms and tintinnids) were observed in the 20-60 μm size fraction, with a maximum of 0.68±0.21mg L-1 chitin, and the highest contribution of chitin to POC (34.62±18.50 %). Eggs, nauplii and natural food (diatoms and tintinnids) were observed in the 60-135 μm size fraction, with a maximum of 0.20±0.12 mg L-1 chitin and a contribution to POC of 9.80±5.00 %. Acartia adults and their exuviae were observed in the ≥135 μm size fraction, with a maximum concentration of chitin of 0.67±0.40, and a maximum contribution of chitin to POC TS of 30.47±27.23 %. Differences were detected between the different fractions in chitin, POC and DW, indicating that the 20-60 and ≥135 µm size fractions were both an important contribution of chitin in the experiment. Our results suggest that pellets, carcasses and exuviae along with natural food and organic aggregates were the main source of chitin in this system.
References
ALLDREDGE, A. L. & GOTSCHALK, C. C. 1990. The relative
contribution of marine snow of different origins to
biological processes in coastal waters. Continental Shelf
Research, 10(1), 41-58.
BATHMANN, U. V., NOJI, T. T., VOSS, M. & PEINERT, R. 1987.
Copepod fecal pellets: abundance, sedimentation and
content at a permanent station in the Norwegian Sea in
May/June 1986*. Marine Ecology Progress Series, 38, 45-51.
BEIER, S. & BERTILSSON, S. 2013. Bacterial chitin degradationmechanisms and ecophysiological strategies. Frontiers in
Microbiology, 4(149), 1-12.
BERASATEGUI, A. A., FERNANDEZ-SEVERINI, M. D., MENENDEZ,
M. C., BIANCALANA, F., DUTTO, M. S., GUINDER, V., LOPEZABBATE, M. C., CHAZARRETA, J. & HOFFMEYER, M. S. 2016.
Reproductive trade-off of the copepod Acartia tonsa in a
hypersaline estuary of the Southwestern Atlantic. Temporal
variations in the morphology of eggs. Marine Biology
Research, 12(8), 817-829.
BERASATEGUI, A. A., LÓPEZ ABBATE, M. C., D’AGOSTINO, V.,
PRESTA, M. L., UIBRIG, R., GARCIA, T. M., NAHUELHUAL, E.,
CHAZARRETA, C. J., DUTTO, M. S., GARCIA, M., CAPITANIO, F.
& HOFFMEYER, M. S. 2018. Mesozooplankton structure and
seasonal dynamics in three coastal systems in Argentina:
Bahía Blanca Estuary, Pirámide Bay and Ushuaia Bay. In:
HOFFMEYER, M. S., SABATINI, M. E., BRANDINI, F. P., CALLIARI,
D. L. & SANTINELLI, N. H. (eds.). Plankton Ecology of Atlantic
South America. Switzerland: Springer.
BERGGREEN, U., HANSEN, B. & KIORBOE, T. 1988. Food size
spectra, ingestion and growth of the copepod Acartia tonsa
during development: implications for determination of
copepod production. Marine Biology, 99(3), 341-352.
BIANCALANA, F., KOPPRIO, G., DUTTO, M. S., BERASATEGUI, A.
A., FRINCKE, A., GARZÓN-CARDONA, J. E., PETERKE, D. &
LARA, R. J. 2017a. Chitin determination on marine seston in
a shallow temperate estuary (Argentina). Brazilian Journal
of Oceanography, 65(2), 146-154.
BIANCALANA, F., KOPPRIO, G. A., LARA, R. J. & ALONSO, C.
b. A protocol for a simultaneous identification of
chitin-containing particles and their associated bacteria.
Systematic and Applied Microbiology, 40(5), 314-320.
BIANCALANA, F., FERNÁNDEZ-SEVERINI, M. D., VILLAGRAN,
D. M., BERASATEGUI, A. A., TARTARA, M. N., SPETTER, C.
V., GUINDER, V., MARCOVECCHIO, J. E. & LARA, R. 2019.
Assessment of chitin variation in seston of a temperate
estuary (Bahía Blanca, Argentina). Environmental Earth
Sciences, 78, 1-14.
BROGLIO, E., JÓNASDÓTTIR, S. H., CALBET, A., JAKOBSEN, H. H.
& SAIZ, E. 2003. Effect of heterotrophic versus autotrophic
food on feeding and reproduction of the calanoid copepod
Acartia tonsa: relationship with prey fatty acid composition.
Aquatic Microbial Ecology, 31(3), 267-278.
CALLIARI, D., ANDERSEN BORG, M. C., THOR, P., GOROKHOVA, E.
& TISELIUS, P. 2008. Instantaneous salinity reductions affect
the survival and feeding rates of the co-occurring copepods
Acartia tonsa Dana and A. clausi Giesbrecht differently. Journal
of Experimental Marine Biology and Ecology, 362, 18-25.
CALLIARI, D., MARC-ANDERSEN, C., THOR, P., GOROKHOVA, E.
& TISELIUS, P. 2006. Salinity modulates the energy balance
and the productive success of co-occurring copepods
Acartia tonsa and A. clausi in different ways. Marine Ecology
Progress Series, 312, 177-188.
DIODATO, S. L., BERASATEGUI, A. A. & HOFFMEYER, M. S.
Morphological types and seasonal variation in
eggs of zooplankton species from bottom sediments
in Bahía Blanca Estuary, Argentina*. Brazilian Journal of
Oceanography, 54(2-3), 161-167.
DIODATO, S. L. & HOFFMEYER, M. S. 2008. Contribution of
planktonic and detritic fractions to the natural diet of
mesozoplankton in Bahía Blanca Estuary. Hydrobiologia,
, 83-90.
DURBIN, A. G. & DURBIN, E. G. 1981. Standing stock and
estimated production rates of phytoplankton and
zooplankton in Narragansett Bay, Rhode Island. Estuaries,
(1), 24-41.
DUTTO, M. S., GENZANO, G. N., SCHIARITI, A., LECANDA, J.,
HOFFMEYER, M. S. & PRATOLONGO, P. D., 2017. Medusae
and ctenophores from the Bahía Blanca Estuary and
neighboring inner shelf (Southwest Atlantic Ocean,
Argentina). Marine Biodiversity Records, 10, 1-14.
DUTTO, M. S., LÓPEZ ABBATE, M. C., BIANCALANA, F.,
BERASATEGUI, A. A. & HOFFMEYER, M. S. 2012. The
impact of sewage on environmental quality and the
mesozooplankton community in a highly eutrophic estuary
in Argentina. ICES Journal of Marine Science, 69(3), 399-409.
DURKIN, C. A., MOCK, T. & ARMBRUST, E. V. 2009. Chitin in
diatoms and its association with the cell wall. Eukaryotic
Cell, 8(7), 1038-1050.
ESCARAVAGE, V. & SOETAERT, K. 1995. Secondary production of
the brackish copepod communities and their contribution
to the carbon fluxes in the Westerschelde estuary (The
Netherlands). Hydrobiologia, 311, 103-114
FOSTER, G. R. 1953. Peritrophic membranes in the Caridea
(Crustacea Decapoda). Journal of the Marine Biological
Association of the United Kingdom, 32(2), 315-318.
FREIJE, R. H., SPETTER, C. V., MARCOVECCHIO, J. E., POPOVICH,
C. A., BOTTÉ, S. E. & NEGRIN, V. L. 2008. Water chemistry
and nutrients of the Bahía Blanca estuary. In: NEVES, R.,
BARETTA, J. & MATEUS, M. (eds.). Perspectives on Integrated
Coastal Zone Management in South America. Lisbon,
Portugal: ISTPress.
GOODAY, G. W. 1990. Physiology of microbial degradation of
chitin and chitosan. Biodegradation, 1(2-3), 177-190.
GUINDER, V. A., MOLINERO, J. C., POPOVICH, C. A.,
MARCOVECCHIO, J. E. & SOMMER, U. 2012. Dominance
of the planktonic diatom Thalassiosira minima in recent
summers in the Bahia Blanca Estuary, Argentina. Journal of
Plankton Research, 34(11), 995-1000.
GUINDER, V. A., POPOVICH, C. A., MOLINERO, J. C. & PERILLO,
G. M. E. 2010. Long-term changes in phytoplankton
phenology and community structure in the Bahía Blanca
Estuary, Argentina. Marine Biology, 157, 2703-2716.
HANSEN, B., FOTEL, F. L., JENSEN, N. J. & MADSEN, S. D. 1996.
Bacteria associated with a marine planktonic copepod
in culture. II. Degradation of fecal pellets produced on a
diatom, a nanoflagellate or a dinoflagellate diet. Journal of
Plankton Research, 18(2), 275-288.
HEINLE, D. R. 1966. Production of a calanoid copepod, Acartia
Tonsa, in the Patuxent River Estuary. Chesapeake Science,
(2), 59-74.
HOFFMEYER, M. S. 2004. Decadal change in zooplankton
seasonal succession in the Bahía Blanca Estuary, Argentina,
following introduction of two zooplankton species. Journal
of Plankton Research, 26(2), 181-89.
HOFFMEYER, M. S. 2007. Mesozooplancton. In: PICCOLO, M. C. &
HOFFMEYER, M. S. (eds.). El Ecosistema del Estuario de Bahía
Blanca. Bahía Blanca, Argentina: Editorial de la Universidad
Nacional del Sur (EdiUNS).
JEUNIAUX, C. H. & VOSS-FOUCART, M. F. 1991. Chitin biomass
and production in the marine environment. Biochemical
Systematic and Ecology, 19(5), 347-356.
JOHNSTONE, J. 1908. Conditions of life in the sea. In: SHIPLEY, A.
E. (ed.). Cambridge Biological Series. Cambridge: University
Press.
KAYA, M., SARGIN, I., TOZAK, K. Ö., BARAN, T., ERDOGAN, S. &
SEZEN, G. 2013. Chitin extraction and characterization
from Daphnia magna resting eggs. International Journal of
Biological Macromolecules, 61, 459-464.
KIRCHNER, M. 1995. Microbial colonization of copepod body
surfaces and chitin degradation in the sea. Helgolander
Meeresunters, 49, 201-212.
KIORBOE, T., MOHLENBERG, F. & HAMBURGER, K. 1985.
Bioenergetics of the planktonic copepod Acartia tonsa:
relation between feeding, egg production and respiration,
and composition of specific dynamic action. Marine Ecology
Progress Series, 26, 85-97.
LARA, R. J., NEOGI, S. B., ISLAM, S., MAHMUD, Z. H., ISLAM,
S., DEBASISH, P., DEMOZ, B. B., YAMASAKI, S., NAIR, G.
B. & KATTNER, G. 2011. Vibrio cholerae in waters of the
Sundarban mangroves: relationship with biogeochemical
parameters and chitin content in seston size fractions.
Wetlands Ecology and Management, 19(1), 109-119.
LEANDRO, S. M., TISELIUS, P. & QUEIROGA, H. 2006. Growth and
development of nauplii and copepodites of the estuarine
copepod Acartia tonsa from southern Europe (Ria de Aveiro,
Portugal) under saturating food conditions. Marine Biology,
(1), 121-129.
LEANDRO, S. M., TISELIUS, P., MARQUÉS, S. C., AVELELAS, F.,
CORREIA, C. R., SÁ, P. & QUEIROGA, H. 2014. Copepod
production estimated by combining in situ data and
specific temperature-dependent somatic growth models.
Hydrobiologia, 741(1), 139-15.
MAUCHLINE, J. 1998. The Biology of Calanoid Copepods. Oxford:
Elsevier Academic Press.
MONTGOMERY, M. T., WELSCHMEYER, N. A. & KIRCHMAN, D. L.
A simple assay for chitin: application to sediment trap
samples from the subarctic Pacific. Marine Ecology Progress
Series, 64, 301-308.
MUXAGATA, E., AMARAL, W. J. A. & BARBOSA, C. N. 2012. Acartia
tonsa production in the Patos Lagoon estuary, Brazil. ICES
Journal of Marine Science, 69(3), 475-482.
NICOL, S. & HOSIE, G. W. 1993. Chitin production by krill.
Biochemical Systematics and Ecology, 21(2), 181-184.
PAN, J., BOURNOD, C. N., PIZANI, N. V., CUADRADO, D. G. &
CARMONA, N. B. 2013. Characterization of microbial mats
from a siliciclastic tidal flat (Bahía Blanca estuary, Argentina).
Geomicrobiology Journal, 30(8), 665-674.
PECK, M. A. & HOLSTE, L. 2006. Effects of salinity, photoperiod
and adult stocking density on egg production and egg
hatching success in Acartia tonsa (Calanoida: Copepoda):
optimizing intensive cultures. Aquaculture, 255(1-4), 341-
PERILLO, G. M. E., PICCOLO, M. C., PARODI, E. & FREIJE, R. H.
The Bahía Blanca estuary, Argentina. In: SEELIGER,
U. & KJERFVE, B. (eds.). Coastal Marine Ecosystems of Latin
America, Ecological Studies. New York: Springer.
PETTIGROSSO, R. E. & BARRÍA DE CAO, M. S. 2007. Ciliados
planctónicos. In: PICCOLO, M. C. & HOFFMEYER, M. (eds.).
El ecosistema del estuario de Bahía Blanca. Bahía Blanca,
Argentina: Editorial de la Universidad Nacional del Sur
(EdiUNS).
POPOVICH, C. A. & MARCOVECCHIO, J. E. 2008. Spatial and
temporal variability of phytoplankton and environmental
factors in a temperate estuary of South America Atlantic
coast, Argentina). Continental Shelf Research, 28, 236-244.
SABATINI, M. E. 1989. Ciclo anual del copépodo Acartia tonsa
Dana 1849 en la zona interna de Bahía Blanca (Provincia de
Buenos Aires, Argentina). Scientia Marina, 53, 847-56.
SIMON, M., GROSSART, H. P., SCHWEITZER, B. & PLOUG, H.
Microbial ecology of organic aggregates in aquatic
ecosystems. Aquatic Microbial Ecology, 28, 175-211.
SMUCKER, R. A. 1991. Chitin primary production. Biochemical
Systematics and Ecology, 19(5), 357-369.
SOUZA, C. P., ALMEIDA, B. C., COLWELL, R. R. & RIVERA, I. N. G.
The importance of chitin in the marine environment.
Marine Biotechnology, 13, 823-830.
STRICKLAND, J. H. D. & PARSONS, T. R. 1968. A practical handbook of
seawater analysis. Ottawa: Fisheries Research Board of Canada.
STOTTRUP, J. G. 2000. The elusive copepods: their production
and suitability in marine aquaculture. Aquaculture Research,
, 703-711.
TANG, K. W., TURK, V. & GROSSART, H. P. 2010. Linkage between
crustacean zooplankton and aquatic bacteria. Aquatic
Microbial Ecology, 61, 261-277.
TURNER, J. T. 2002. Zooplankton fecal pellets, marine snow and sinking
phytoplankton blooms. Aquatic Microbial Ecology, 27, 57-102.
TURNER, J. T. & FERRANTE, J. G. 1979. Zooplankton fecal pellets
in aquatic ecosystems. BioScience, 29(11), 670-677.
WOTTON, R. S. 2011. EPS (Extracellular Polymeric Substances),
silk, and chitin: vitally important exudates in aquatic
ecosystems. Journal of the North American Benthological
Society, 30(3), 762-769.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Ocean and Coastal Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.