Size-fractionated chitin contribution to seston, with linkages to the copepod Acartia

Authors

  • Florencia Biancalana Universidad Nacional del Sur
  • Anabela Anahí Berasategui1 Universidad Nacional del Sur

DOI:

https://doi.org/10.1590/S2675-28242020068299

Keywords:

Chitin, Acartia tonsa, Organic matter, Estuary

Abstract

The main purpose of the present work was to determine chitin from experimental size-fractioned incubations of the copepod Acartia tonsa, considered one of the primary sources of chitin in the Bahía Blanca Estuary. Sampling was performed during the austral warm season at one station in 2014 and 2015. Field-collected females (200 individuals) and males (100 individuals) were incubated in 8 L containers in the laboratory simulating in situ environmental conditions of temperature and salinity for 72 hours. Chitin content was measured in different size fractions (20-60, 60-135 and ≥135 μm). Particulate organic matter and dry weight were also determined in the different size fractions. Highly agglutinated debris, pellets, and natural food (diatoms and tintinnids) were observed in the 20-60 μm size fraction, with a maximum of 0.68±0.21mg L-1 chitin, and the highest contribution of chitin to POC (34.62±18.50 %). Eggs, nauplii and natural food (diatoms and tintinnids) were observed in the 60-135 μm size fraction, with a maximum of 0.20±0.12 mg L-1 chitin and a contribution to POC of 9.80±5.00 %. Acartia adults and their exuviae were observed in the ≥135 μm size fraction, with a maximum concentration of chitin of 0.67±0.40, and a maximum contribution of chitin to POC TS of 30.47±27.23 %. Differences were detected between the different fractions in chitin, POC and DW, indicating that the 20-60 and ≥135 µm size fractions were both an important contribution of chitin in the experiment. Our results suggest that pellets, carcasses and exuviae along with natural food and organic aggregates were the main source of chitin in this system.

References

ALLDREDGE, A. L. & GOTSCHALK, C. C. 1990. The relative

contribution of marine snow of different origins to

biological processes in coastal waters. Continental Shelf

Research, 10(1), 41-58.

BATHMANN, U. V., NOJI, T. T., VOSS, M. & PEINERT, R. 1987.

Copepod fecal pellets: abundance, sedimentation and

content at a permanent station in the Norwegian Sea in

May/June 1986*. Marine Ecology Progress Series, 38, 45-51.

BEIER, S. & BERTILSSON, S. 2013. Bacterial chitin degradationmechanisms and ecophysiological strategies. Frontiers in

Microbiology, 4(149), 1-12.

BERASATEGUI, A. A., FERNANDEZ-SEVERINI, M. D., MENENDEZ,

M. C., BIANCALANA, F., DUTTO, M. S., GUINDER, V., LOPEZABBATE, M. C., CHAZARRETA, J. & HOFFMEYER, M. S. 2016.

Reproductive trade-off of the copepod Acartia tonsa in a

hypersaline estuary of the Southwestern Atlantic. Temporal

variations in the morphology of eggs. Marine Biology

Research, 12(8), 817-829.

BERASATEGUI, A. A., LÓPEZ ABBATE, M. C., D’AGOSTINO, V.,

PRESTA, M. L., UIBRIG, R., GARCIA, T. M., NAHUELHUAL, E.,

CHAZARRETA, C. J., DUTTO, M. S., GARCIA, M., CAPITANIO, F.

& HOFFMEYER, M. S. 2018. Mesozooplankton structure and

seasonal dynamics in three coastal systems in Argentina:

Bahía Blanca Estuary, Pirámide Bay and Ushuaia Bay. In:

HOFFMEYER, M. S., SABATINI, M. E., BRANDINI, F. P., CALLIARI,

D. L. & SANTINELLI, N. H. (eds.). Plankton Ecology of Atlantic

South America. Switzerland: Springer.

BERGGREEN, U., HANSEN, B. & KIORBOE, T. 1988. Food size

spectra, ingestion and growth of the copepod Acartia tonsa

during development: implications for determination of

copepod production. Marine Biology, 99(3), 341-352.

BIANCALANA, F., KOPPRIO, G., DUTTO, M. S., BERASATEGUI, A.

A., FRINCKE, A., GARZÓN-CARDONA, J. E., PETERKE, D. &

LARA, R. J. 2017a. Chitin determination on marine seston in

a shallow temperate estuary (Argentina). Brazilian Journal

of Oceanography, 65(2), 146-154.

BIANCALANA, F., KOPPRIO, G. A., LARA, R. J. & ALONSO, C.

b. A protocol for a simultaneous identification of

chitin-containing particles and their associated bacteria.

Systematic and Applied Microbiology, 40(5), 314-320.

BIANCALANA, F., FERNÁNDEZ-SEVERINI, M. D., VILLAGRAN,

D. M., BERASATEGUI, A. A., TARTARA, M. N., SPETTER, C.

V., GUINDER, V., MARCOVECCHIO, J. E. & LARA, R. 2019.

Assessment of chitin variation in seston of a temperate

estuary (Bahía Blanca, Argentina). Environmental Earth

Sciences, 78, 1-14.

BROGLIO, E., JÓNASDÓTTIR, S. H., CALBET, A., JAKOBSEN, H. H.

& SAIZ, E. 2003. Effect of heterotrophic versus autotrophic

food on feeding and reproduction of the calanoid copepod

Acartia tonsa: relationship with prey fatty acid composition.

Aquatic Microbial Ecology, 31(3), 267-278.

CALLIARI, D., ANDERSEN BORG, M. C., THOR, P., GOROKHOVA, E.

& TISELIUS, P. 2008. Instantaneous salinity reductions affect

the survival and feeding rates of the co-occurring copepods

Acartia tonsa Dana and A. clausi Giesbrecht differently. Journal

of Experimental Marine Biology and Ecology, 362, 18-25.

CALLIARI, D., MARC-ANDERSEN, C., THOR, P., GOROKHOVA, E.

& TISELIUS, P. 2006. Salinity modulates the energy balance

and the productive success of co-occurring copepods

Acartia tonsa and A. clausi in different ways. Marine Ecology

Progress Series, 312, 177-188.

DIODATO, S. L., BERASATEGUI, A. A. & HOFFMEYER, M. S.

Morphological types and seasonal variation in

eggs of zooplankton species from bottom sediments

in Bahía Blanca Estuary, Argentina*. Brazilian Journal of

Oceanography, 54(2-3), 161-167.

DIODATO, S. L. & HOFFMEYER, M. S. 2008. Contribution of

planktonic and detritic fractions to the natural diet of

mesozoplankton in Bahía Blanca Estuary. Hydrobiologia,

, 83-90.

DURBIN, A. G. & DURBIN, E. G. 1981. Standing stock and

estimated production rates of phytoplankton and

zooplankton in Narragansett Bay, Rhode Island. Estuaries,

(1), 24-41.

DUTTO, M. S., GENZANO, G. N., SCHIARITI, A., LECANDA, J.,

HOFFMEYER, M. S. & PRATOLONGO, P. D., 2017. Medusae

and ctenophores from the Bahía Blanca Estuary and

neighboring inner shelf (Southwest Atlantic Ocean,

Argentina). Marine Biodiversity Records, 10, 1-14.

DUTTO, M. S., LÓPEZ ABBATE, M. C., BIANCALANA, F.,

BERASATEGUI, A. A. & HOFFMEYER, M. S. 2012. The

impact of sewage on environmental quality and the

mesozooplankton community in a highly eutrophic estuary

in Argentina. ICES Journal of Marine Science, 69(3), 399-409.

DURKIN, C. A., MOCK, T. & ARMBRUST, E. V. 2009. Chitin in

diatoms and its association with the cell wall. Eukaryotic

Cell, 8(7), 1038-1050.

ESCARAVAGE, V. & SOETAERT, K. 1995. Secondary production of

the brackish copepod communities and their contribution

to the carbon fluxes in the Westerschelde estuary (The

Netherlands). Hydrobiologia, 311, 103-114

FOSTER, G. R. 1953. Peritrophic membranes in the Caridea

(Crustacea Decapoda). Journal of the Marine Biological

Association of the United Kingdom, 32(2), 315-318.

FREIJE, R. H., SPETTER, C. V., MARCOVECCHIO, J. E., POPOVICH,

C. A., BOTTÉ, S. E. & NEGRIN, V. L. 2008. Water chemistry

and nutrients of the Bahía Blanca estuary. In: NEVES, R.,

BARETTA, J. & MATEUS, M. (eds.). Perspectives on Integrated

Coastal Zone Management in South America. Lisbon,

Portugal: ISTPress.

GOODAY, G. W. 1990. Physiology of microbial degradation of

chitin and chitosan. Biodegradation, 1(2-3), 177-190.

GUINDER, V. A., MOLINERO, J. C., POPOVICH, C. A.,

MARCOVECCHIO, J. E. & SOMMER, U. 2012. Dominance

of the planktonic diatom Thalassiosira minima in recent

summers in the Bahia Blanca Estuary, Argentina. Journal of

Plankton Research, 34(11), 995-1000.

GUINDER, V. A., POPOVICH, C. A., MOLINERO, J. C. & PERILLO,

G. M. E. 2010. Long-term changes in phytoplankton

phenology and community structure in the Bahía Blanca

Estuary, Argentina. Marine Biology, 157, 2703-2716.

HANSEN, B., FOTEL, F. L., JENSEN, N. J. & MADSEN, S. D. 1996.

Bacteria associated with a marine planktonic copepod

in culture. II. Degradation of fecal pellets produced on a

diatom, a nanoflagellate or a dinoflagellate diet. Journal of

Plankton Research, 18(2), 275-288.

HEINLE, D. R. 1966. Production of a calanoid copepod, Acartia

Tonsa, in the Patuxent River Estuary. Chesapeake Science,

(2), 59-74.

HOFFMEYER, M. S. 2004. Decadal change in zooplankton

seasonal succession in the Bahía Blanca Estuary, Argentina,

following introduction of two zooplankton species. Journal

of Plankton Research, 26(2), 181-89.

HOFFMEYER, M. S. 2007. Mesozooplancton. In: PICCOLO, M. C. &

HOFFMEYER, M. S. (eds.). El Ecosistema del Estuario de Bahía

Blanca. Bahía Blanca, Argentina: Editorial de la Universidad

Nacional del Sur (EdiUNS).

JEUNIAUX, C. H. & VOSS-FOUCART, M. F. 1991. Chitin biomass

and production in the marine environment. Biochemical

Systematic and Ecology, 19(5), 347-356.

JOHNSTONE, J. 1908. Conditions of life in the sea. In: SHIPLEY, A.

E. (ed.). Cambridge Biological Series. Cambridge: University

Press.

KAYA, M., SARGIN, I., TOZAK, K. Ö., BARAN, T., ERDOGAN, S. &

SEZEN, G. 2013. Chitin extraction and characterization

from Daphnia magna resting eggs. International Journal of

Biological Macromolecules, 61, 459-464.

KIRCHNER, M. 1995. Microbial colonization of copepod body

surfaces and chitin degradation in the sea. Helgolander

Meeresunters, 49, 201-212.

KIORBOE, T., MOHLENBERG, F. & HAMBURGER, K. 1985.

Bioenergetics of the planktonic copepod Acartia tonsa:

relation between feeding, egg production and respiration,

and composition of specific dynamic action. Marine Ecology

Progress Series, 26, 85-97.

LARA, R. J., NEOGI, S. B., ISLAM, S., MAHMUD, Z. H., ISLAM,

S., DEBASISH, P., DEMOZ, B. B., YAMASAKI, S., NAIR, G.

B. & KATTNER, G. 2011. Vibrio cholerae in waters of the

Sundarban mangroves: relationship with biogeochemical

parameters and chitin content in seston size fractions.

Wetlands Ecology and Management, 19(1), 109-119.

LEANDRO, S. M., TISELIUS, P. & QUEIROGA, H. 2006. Growth and

development of nauplii and copepodites of the estuarine

copepod Acartia tonsa from southern Europe (Ria de Aveiro,

Portugal) under saturating food conditions. Marine Biology,

(1), 121-129.

LEANDRO, S. M., TISELIUS, P., MARQUÉS, S. C., AVELELAS, F.,

CORREIA, C. R., SÁ, P. & QUEIROGA, H. 2014. Copepod

production estimated by combining in situ data and

specific temperature-dependent somatic growth models.

Hydrobiologia, 741(1), 139-15.

MAUCHLINE, J. 1998. The Biology of Calanoid Copepods. Oxford:

Elsevier Academic Press.

MONTGOMERY, M. T., WELSCHMEYER, N. A. & KIRCHMAN, D. L.

A simple assay for chitin: application to sediment trap

samples from the subarctic Pacific. Marine Ecology Progress

Series, 64, 301-308.

MUXAGATA, E., AMARAL, W. J. A. & BARBOSA, C. N. 2012. Acartia

tonsa production in the Patos Lagoon estuary, Brazil. ICES

Journal of Marine Science, 69(3), 475-482.

NICOL, S. & HOSIE, G. W. 1993. Chitin production by krill.

Biochemical Systematics and Ecology, 21(2), 181-184.

PAN, J., BOURNOD, C. N., PIZANI, N. V., CUADRADO, D. G. &

CARMONA, N. B. 2013. Characterization of microbial mats

from a siliciclastic tidal flat (Bahía Blanca estuary, Argentina).

Geomicrobiology Journal, 30(8), 665-674.

PECK, M. A. & HOLSTE, L. 2006. Effects of salinity, photoperiod

and adult stocking density on egg production and egg

hatching success in Acartia tonsa (Calanoida: Copepoda):

optimizing intensive cultures. Aquaculture, 255(1-4), 341-

PERILLO, G. M. E., PICCOLO, M. C., PARODI, E. & FREIJE, R. H.

The Bahía Blanca estuary, Argentina. In: SEELIGER,

U. & KJERFVE, B. (eds.). Coastal Marine Ecosystems of Latin

America, Ecological Studies. New York: Springer.

PETTIGROSSO, R. E. & BARRÍA DE CAO, M. S. 2007. Ciliados

planctónicos. In: PICCOLO, M. C. & HOFFMEYER, M. (eds.).

El ecosistema del estuario de Bahía Blanca. Bahía Blanca,

Argentina: Editorial de la Universidad Nacional del Sur

(EdiUNS).

POPOVICH, C. A. & MARCOVECCHIO, J. E. 2008. Spatial and

temporal variability of phytoplankton and environmental

factors in a temperate estuary of South America Atlantic

coast, Argentina). Continental Shelf Research, 28, 236-244.

SABATINI, M. E. 1989. Ciclo anual del copépodo Acartia tonsa

Dana 1849 en la zona interna de Bahía Blanca (Provincia de

Buenos Aires, Argentina). Scientia Marina, 53, 847-56.

SIMON, M., GROSSART, H. P., SCHWEITZER, B. & PLOUG, H.

Microbial ecology of organic aggregates in aquatic

ecosystems. Aquatic Microbial Ecology, 28, 175-211.

SMUCKER, R. A. 1991. Chitin primary production. Biochemical

Systematics and Ecology, 19(5), 357-369.

SOUZA, C. P., ALMEIDA, B. C., COLWELL, R. R. & RIVERA, I. N. G.

The importance of chitin in the marine environment.

Marine Biotechnology, 13, 823-830.

STRICKLAND, J. H. D. & PARSONS, T. R. 1968. A practical handbook of

seawater analysis. Ottawa: Fisheries Research Board of Canada.

STOTTRUP, J. G. 2000. The elusive copepods: their production

and suitability in marine aquaculture. Aquaculture Research,

, 703-711.

TANG, K. W., TURK, V. & GROSSART, H. P. 2010. Linkage between

crustacean zooplankton and aquatic bacteria. Aquatic

Microbial Ecology, 61, 261-277.

TURNER, J. T. 2002. Zooplankton fecal pellets, marine snow and sinking

phytoplankton blooms. Aquatic Microbial Ecology, 27, 57-102.

TURNER, J. T. & FERRANTE, J. G. 1979. Zooplankton fecal pellets

in aquatic ecosystems. BioScience, 29(11), 670-677.

WOTTON, R. S. 2011. EPS (Extracellular Polymeric Substances),

silk, and chitin: vitally important exudates in aquatic

ecosystems. Journal of the North American Benthological

Society, 30(3), 762-769.

Downloads

Published

2021-06-15

How to Cite

Size-fractionated chitin contribution to seston, with linkages to the copepod Acartia. (2021). Ocean and Coastal Research, 68, 12. https://doi.org/10.1590/S2675-28242020068299