Wave regime characterization in the northern sector of Patos Lagoon, Rio Grande do Sul, Brazil
DOI:
https://doi.org/10.1590/s2675-28242020068295Keywords:
Wave modeling, SWAN, wave regime in Patos LagoonAbstract
This paper describes wave prediction results for Patos Lagoon's northern sector through numerical modeling using Delft3D software. ERA-Interim satellite reanalysis data of wind intensity and direction were used as inputs to force the hydrodynamic model. For SWAN calibration and validation in the study region, wave parameters were used. These parameters were acquired in situ by a directional waverider buoy. Statistical data showed the good performance of the model, albeit with a tendency to overestimate significant wave height and underestimate peak period and propagation direction. Once validated, wave parameters for five points at different depths were obtained during the four seasons of the year between 2017 and 2018. In general, it was observed that the largest ripples come from the S and SSW directions and occurred during spring at the deepest point under wind conditions exceeding 10 m s-1. Ripples up to 0.30 m account for 77.9 % at the shallowest point and 65.7 % at the deepest point. Thus, the study area was classified as low energy and characterized by small, high-frequency, short-period ripples strongly influenced and determined by the local depth because larger ripples are always observed in the deepest locations, giving the lagoon a characteristic of depth-limited ripples. The results obtained here have the potential to contribute to territorial management of the region, with emphasis on the Integral Protection Conservation Unit located in the study area (Itapuã State Park) and on the development and safety of the important, heavily used navigation route that connects Rio Grande Port to the state capital, Porto Alegre.
References
AKPINAR, A., VAN VLEDDER, G. P., KÖMÜRCÜ, M. I. & ÖZGER, M. 2012.
Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea. Continental Shelf Research, 50-51, 80-99.
BRYANT, E. 1979. Comparison of computed and observed
breaker wave heights. Coastal Engineering, 3, 39-50.
CASSIANO, G. F., RIBEIRO, R. B. & YASSUDA, E. A. 2012. Acquisition of wave data and modeling in Santos Bay, São Paulo,
Brazil. In: 10th International Conference on Hydroscience & Engineering, 4-7 Nov. 2012. Orlando, Flórida, USA: ICHE-2012.
CASTELÃO, R. M. & MÖLLER, O. O. 2003. Sobre a circulação tridimensional forçada por ventos na Lagoa dos Patos. Revista
Atlântica, 25(2), 91-106.
DELANEY, P. 1965. Fisiografia e geologia de superfície da planície costeira do Rio Grande do Sul. DSc. University of São
Paulo. Available at: https://teses.usp.br/teses/disponiveis/44/44997/tde-29082016-151600/publico/Delaney_
Doutorado.pdf [Accessed 10 July 2018].
ECMWF (European Centre for Medium-Range Weather Forecasts). ERA Interim, Daily [online]. Reading, UK: ECMWF.
Available at: https://apps.ecmwf.int/datasets/data/interim-
-full-daily/levtype=sfc/ [Accessed: 14 January 2019].
FONTOURA, J. A. S., NICOLODI, J. L., ROMEU, M. A. R., MELO, E.,
LEMKE, N., AGUIAR, D. F. & GOULART, M. M. 2015. Medição
direcional de ondas na Lagoa dos Patos, RS, Brasil. In: Congresso Hidroviário da Sociedade Brasileira de Engenharia Naval (SOBENA), 6-8 Oct. 2015. Manaus, AM, Brazil: SOBENA.
GUEDES-SOARES, C. 1986. Calibration of visual observations of
wave period. Ocean Engineering, 13(6), 539-547.
GUIMARÃES, P. V., FARINA, L., TOLDO JUNIOR, E., DIAZ-HERNANDEZ,
G. & AKHMATSKAYA, E. 2015. Numerical simulation of extreme
wave runup during storms events in Tramandaí Beach, Rio
Grande do Sul, Brazil. Coastal Engineering, 95, 171-180.
HASSELMANN, K. & COLLINS, J. I. 1968. Spectral dissipation of
finite depth gravity waves due to turbulent bottom friction.
Journal of Marine Research, 26(1), 1-12.
HOLTHUIJSEN, L. H. 2007. Waves in oceanic and coastal waters.
New York: Cambridge University Press.
JARDINE, T. P. 1979. The reliability of visually observed wave heights. Coastal Engineering, 3, 33-38.
KJERFVE, B. 1986. Comparative oceanography of coastal lagoons.
In: WOLFE, D. A. (ed.). Estuarine variability. New York: Academic Press, 63-81.
KJERFVE, B. & MAGILL, K. E. 1989. Geographic and hydrographic
characteristics of shallow coastal lagoons. Marine Geology,
(3-4), 187-199.
KOMEN, G. J., HASSELMANN, S. & HASSELMANN, K. 1984. On the
existence of a fully developed wind-sea spectrum. Journal
of Physical Oceanography, 14(8), 1271-1285.
LALBEHARRY, R. 2001. Evaluation of the CMC regional wave
forecasting system against buoy data. Atmosphere-Ocean,
(1), 1-20.
LEE, J. M., WISEMAN JUNIOR, W. J. & KELLY, F. J. 1990. Barotropic,
subtidal exchange between Calcasieu Lake and the Gulf of
Mexico. Estuaries, 13(3), 258-264.
LEMKE, N., FONTOURA, J. A. S., CALLIARI, L. J., AGUIAR, D. F.,
MELO, E., NICOLODI, J. L., ROMEU, M. A. R. & GOULART, M. M.
Estudo comparativo entre modelagem e medições de
ondas na Lagoa dos Patos – RS, Brasil. In: XI Simpósio sobre
Ondas, Marés, Engenharia Oceânica e Oceanografia por Satélite (XI OMARSAT). Arraial do Cabo, RJ, Brazil: Instituto de
Estudos do Mar Almirante Paulo Moreira.
LEMKE, N., CALLIARI, L. J., FONTOURA, J. A. S. & AGUIAR, D. F.
Wave directional measurement in Patos Lagoon, RS,
Brazil. Brazilian Journal of Water Resources, 22, e.1.
LEMKE, N., FONTOURA, J. A. S., CALLIARI, L. J. & FERREIRA, N. M.
Estimativa de cenários característicos de ondas na enseada de São Lourenço do Sul, Lagoa dos Patos – RS. Revista
Perspectivas Online: Exatas & Engenharias, 8(20), 25-42.
LIN, W. Q., SANFORD, L. P. & SUTTLES, S. E. 2002. Wave measurement and modeling in Chesapeake bay. Continental Shelf
Research, 22, 18-19.
LU, X. & WONG, K. C. 1994. The subtidal lagrangian current in
Delaware’s inland bays under low wind conditions. Estuarine Coastal and Shelf Science, 39, 353-365.
MATOS, M. F. A., SCUDELARI, A. C., AMARO, V. E. & FORTES, C. J.
E. M. 2017. Integration among numeric Simulating (SWAN)
and field data on wave climate determination at the state
of Rio Grande do Norte northern coast. Revista Brasileira de
Geomorfologia, 18(2), 311-328.
MELO, E., HAMMES, G. R., FRANCO, D. & ROMEU, A. R. 2008. Aferição do desempenho do modelo WW3 em Santa Catarina.
In: III Seminário e Workshop em Engenharia Oceânica – FURG
(SEMENGO), 5-7 Nov. 2008. Rio Grande, RS, Brazil: SEMENGO.
MILLET, B., TEXIER, H. & COLLEUIL, B. 1991. Modélisation numérique de circulation et dynamique sédimentaire d’um
écosystème lagunaire tropical: le lac Nokoue (Benin). Journal of Reach Oceanore, 16, 10-15.
MOEINI, M. H. & ETEMAD-SHAHIDI, A. 2009. Wave parameter
hindcasting in a lake using the SWAN model. Scientia Iranica. Sharif University of Technology. Scientia Iranica, International Journal of Science & Technology, 16(2), 156-164.
NICOLODI, J. L. & PETTERMANN, R. M. 2011. Vulnerability of the Brazilian coastal zone in its environmental, social and technological aspects. Journal of Coastal Research, SI64, 1372-1379.
NICOLODI, J. L., TOLDO JUNIOR, E. E. & FARINA, L. 2011. Wave
dynamics and resuspension in Lake Guaíba (Brazil) with implications on points of water abstraction for human supply.
Journal of Coastal Research, SI64, 1550-1554.
NICOLODI, J. L., TOLDO JUNIOR, E. E. & FARINA, L. 2013. Dynamic
and resuspension by waves and sedimentation pattern definition in low energy environments, Guaíba Lake, Brazil. Brazilian Journal of Oceanography, 61(1), 55-64.
PADILLA-HERNÁNDEZ, R. & MONBALIUR, J. 2001. Energy balance
of wind waves as a function of the bottom friction formulation. Coastal Engineering, 43(2), 131-148.
PAES-LEME, R. B., VIOLANTE-CARVALHO, N., ACCETTA, D. & MEIRELLES, S. 2008. Modelagem física e computacional de ondas
geradas pelo vento em um terminal portuário: o desempenho do modelo SWAN 40.51 em uma região com elevada
reflexão e difração. Revista Brasileira de Geofísica, 26(1), 45-59.
PALLARES, E., SÁNCHEZ-ARCILLA, A. & ESPINO, M. 2014. Wave
energy balance in wave models (SWAN) for semi-enclosed
domains – Application to Catalan coast. Continental Shelf Research, 87, 41-53.
PLANT, N. G. & GRIGGS, G. B. 1992. Comparison of visual observations of wave height and period to measurements made
by an offshore slope array. Journal of Coastal Research, 8(4),
-965.
ROCHA, M. V. L., MOURA, T., FORTES, C. J. E. M., CAPITÃO, R., BEZERRA, M. M. & SANCHO, F. E. 2012. Análise comparativa de
medições in situ e estimativas numérica na Praia da Cornélia, Costa da Caparica, Portugal. Journal of Integrated Coastal
Zone Management, 12(2), 147-157.
RODRÍGUEZ, M. G., NICOLODI, J. L., GUTIÉRREZ, O. M., LOSADA, V.
C. & HERMOSA, A.E. 2018. Brazilian coastal processes: wind,
wave climate and sea level. In: SHORT, A. D. & KLEIN, A. H. F.
(eds.). Brazilian Beach Systems. Switzerland: Springer Nature,
pp. 37-66.
RUSU, E. 2016. Reliability and applications on the numerical wave
predictions in the Black Sea. Frontiers in Marine Science, 3, 95.
RUSU, L., BERNARDINHO, M. & SOARES, C. G. 2014. Wind and
wave modeling in the Black Sea. Journal of Operational Oceanography, 7(1), 5-20.
SÁNCHES, A. S., RODRIGUES, D. A., FONTES, R. M., MARTINS, M. F.,
KALID, R. A. & TORRES, E. A. 2018. Wave resource characterization through in-situ measurement followed by artificial neural networks’ modeling. Renewable Energy, 115, 1055-1066.
SEIBT, C., PEETERS, F., GRAF, M., SPRENGER, M. & HOFMANN, H. 2013.
Modeling wind waves and wave exposure of nearshore zones in
medium-sized lakes. Limnology and Oceanography, 58(1), 23-26.
SHIN, S. 2013. Simulation of two-dimensional internal waves generated by a translating and pitching foil. Ocean Engineering, 70, 77-86.
SIMÃO, C. E. 2016. Estudo do padrão de ondulações na Lagoa dos
Patos utilizando o modelo SWAN (Delft3D), RS, Brasil. MSc. Federal University of Rio Grande.
SMITH, N. P. 1978. Long period, estuarine-shelf exchanges in
response to meteorological forcing. In: Nihoul, J. C. J. (ed.).
Hydrodynamics of estuaries and Fjords. Amsterdam: Elsevier
Oceanography Series 30, pp. 147-159.
SORENSEN, O., KOFOED-HANSEN, H., RUGBJERG, M. & SORENSEN, L. S.
A third-generation spectral wave model using an unstructured finite volume technique. In: 29th International Conference on
Coastal Engineering (ICCE), 19-24 Sep. 2004.Lisbon, Portugal: ICCE.
STECH, J. L. & LORENZZETTI, J. A. 1992. The response of the
South Brazil Bight to the passage of wintertime cold fronts.
Journal of Geophysics Research, 97(C6), 9507-9520.
TOLDO, E. E., ALMEIDA, L. E. S. B., CORRÊS, I. C. S., FERREIRA, E. R. &
GRUBER, N. L. S. 2006. Wave prediction along Lagoa dos Patos
Coastline, Southern Brasil. Revista Atlântica, 28(2), 87-95.
TOMAZELLI, L. J. 1993. O regime dos ventos e a taxa de migração das dunas eólicas costeiras do Rio Grande do Sul, Brasil.
Pesquisas, 20:18-26.
USACE (U.S. Army Corps of Engineers). 2002. Department of the
Army. Engineer Manuals. Coastal Engineering Manual – Part
II. Washington, DC: USACE.
VAN VLEDDER, G. P. & AKPINAR, A. 2015. Wave model predictions in the Black Sea: sensitivity to wind fields. Applied
Ocean Research, 53, 161-178.
VILLWOCK, J.A., TOMAZELLI, L.J., LOSS, E.L., DEHNHARDT, E.A.,
HORN Fo, N.O., BACHI, F.A., DEHNHARDT, BA. 1986. Geology
of the Rio Grande do Sul Coastal Province. In: RABASA, J.,
(ed.), Quaternary of South America and Antarctic Peninsula.
Rotterdam: A.A. Balkema Publishers, 4, 11p.
WONG, K. C. 1991. The effect of coastal sea level forcing on
Indian River Bay and Rehoboth Bay, Delaware. Estuarine,
Coastal and Shelf Science, 32(3), 213-229.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Ocean and Coastal Research
This work is licensed under a Creative Commons Attribution 4.0 International License.