Seep hunting in the Santos Basin, Southwest Atlantic: sampling strategy and employed methods of the multidisciplinary cruise BIOIL 1
DOI:
https://doi.org/10.1590/Keywords:
Pockmarks, Chemosynthesis, Macrobenthos, Carbonate mounds, Microbial diversitAbstract
The continental margin off the southeastern Brazilian coast is punctuated by a series of geological-geomorphological features, such as subsurface saline diapirs and pockmarks at the seafloor interface, which evidence the abundant presence of oil and gas in the region. In several of these sites, hydrocarbons can be naturally released into the water column, areas are cold seep areas. These are marked by the presence of oil- and gas-dependent ecosystems, where specific organisms are able to fix carbon from hydrocarbon chemosynthesis. In addition, light hydrocarbon fluid flow through the sediment may build up authigenic carbonates that can be further colonized by cold-water corals, generating large carbonate mounds over geological time, normally positioned at the border of these pockmark features. The present work reports on a multidisciplinary oceanographic cruise carried out in the Santos Basin, SW Atlantic, to seek, map, and collect geological, chemical, and biological data from different deep-sea habitats. The cruise occurred in November 2019 on the R/V Alpha Crucis of the Oceanographic Institute of the University of São Paulo (IOUSP). We intended to discover and detail different geomorphological features, characterize free-living and symbiotic microorganisms, determine the chemosynthetic rates in relation to heterotrophic microbial production, and characterize the fauna and study their ecological and evolutionary links within and across ocean basins. All discoveries made during the cruise and their respective results will be presented separately in several papers that comprise this special volume.
References
CORDES, E. E., CUNHA, M. R., GALÉRON, J., MORA, C., ROY, K., SIBUET, M., GAEVER, S. V., VANREUSEL, A. & LEVIN, L. A. 2010. The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Marine Ecology, 31, 51-65, DOI: https://doi.org/10.1111/j.1439-0485.2009.00334.x
» https://doi.org/10.1111/j.1439-0485.2009.00334.x
DOMANESCHI, O. & LOPES, S. G. B. C. 1990. Calyptogena (Calyptogena) birmani, a new species of Vesicomyidae (Mollusca: Bivalvia) from Brazil. Malacologia, 31(2), 363-370.
GIONGO, A., HAAG, T., SIMÃO, T. L. L., MEDINA-SILVA, R., UTZ, L. R. P., BOGO, M. R., BONATTO, S. L., ZAMBERLAN, P. M., AUGUSTIN, A. H., LOUREGA, R. V., RODRIGUES, L. F., SBRISSA, G. F., KOWSMANN, R. O., FREIRE, A. F. M., MILLER, D. J., VIANA, A. R., KETZER, J. M. M. & EIZIRIK, E. 2016. Discovery of a chemosynthesis-based community in the western South Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 112, 45-56, DOI: http://doi.org/10.1016/j.dsr.2015.10.010
» http://doi.org/10.1016/j.dsr.2015.10.010
GUILLON, E., MENOT, L., DECKER, C., KRILOVA, E. & OLU, K. 2017. The vesicomyid bivalve habitat at cold seeps supports heterogeneous and dynamic macrofaunal assemblages. Deep-Sea Research Part I: Oceanographic Research Papers, 120, 1-13.
HENRY, L. A. & ROBERTS, J. M. 2007. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 54(4), 654-672.
HOVLAND, M. 1990. Do carbonate reefs form due to fluid seepage? Terra Nova, 2(1), 8-18, DOI: https://doi.org/10.1111/j.1365-3121.1990.tb00031.x
» https://doi.org/10.1111/j.1365-3121.1990.tb00031.x
KETZER, J. M., AUGUSTIN, A., RODRIGUES, L. F., OLIVEIRA, R., PRAEG, D., PIVEL, M. A. G., REIS, A. T., SILVA, C. & LEONEL, B. 2018. Gas seeps and gas hydrates in the Amazon deep-sea fan. Geo-Marine Letters, 38, 429-438, DOI: https://doi.org/10.1007/s00367-018-0546-6
» https://doi.org/10.1007/s00367-018-0546-6
KIRCHMAN, D. L., K’NESS, E. & HODSON, R. E. 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and Environmental Microbiology, 49(3), 599-607.
LEVIN, L. A. 2005. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology: An Annual Review, 43, 1-46.
LEYDEN, R., ASMUS, H., ZEMBRUSCKI, S. & BRYAN, G. 1976. South Atlantic diapiric structures. AAPG Bulletin, 60(2), 196-212.
MAHIQUES, M. M., SCHATTNER, U., LAZAR, M., SUMIDA, P. Y. G. & SOUZA, L. A. P. 2017. An extensive pockmark field on the upper Atlantic margin of Southeast Brazil: spatial analysis and its relationship with salt diapirism. Heliyon, 3(2), e00257.
MARINHO, C. C., CAMOS, E. A., GUIMARÃES, J. R. D. & ESTEVES, F. A. 2012. Effect of sediment composition on methane concentration and production in the transition zone of a mangrove (Sepetiba Bay, Rio de Janeiro, Brazil). Brazilian Journal of Biology, 72(3), 429-436, DOI: https://doi.org/10.1590/S1519-69842012000300003
» https://doi.org/10.1590/S1519-69842012000300003
MEDINA-SILVA, R., OLIVEIRA, R. R., TRINDADE, F. J., BORGES, L. G. A., SIMÃO, T. L. L., AUGUSTIN, A. H., VALDEZ, F. P., CONSTANT, M. J., SIMUNDI, C. L., EIZIRIK, E., GROPOSO, C., MILLER, D. J., SILVA, P. R., VIANA, A. R., KETZER, J. M. M. & GIONGO, A. 2017. Microbiota associated with tubes of Escarpia sp. from cold seeps in the southwestern Atlantic Ocean constitutes community distinct from that of surrounding marine sediment and water. Antonie van Leeuwenhoek, 111, 533-550, DOI: http://doi.org/10.1007/s10482-017-0975-7
» http://doi.org/10.1007/s10482-017-0975-7
MILLER, D. J., KETZER, J. M., VIANA, A. R., KOWSMANN, R. O., FREIRE, A. F. M., OREIRO, S. G., AUGUSTIN, A. H., LOUREGA, R. V., RODRIGUES, L. F., HEEMANN, R., PREISSLER, A. G., MACHADO, C. X. & SBRISSA, G. F. 2015. Natural gas hydrates in the Rio Grande Cone (Brazil): a new province in the western South Atlantic. Marine and Petroleum Geology, 67, 187-196.
OLU, K., DECKER, C., PASTOR, L., CAPRAIS, J. C., KHRIPOUNOFF, A., MORINEAUX, M., BAZIZ, M. A., MENOT, L. & RABOUILLE, C. 2017. Cold-seep like macrofaunal communities in organic- and sulfide-rich sediments of the Congo deep-sea fan. Deep Sea Research Part II: Topical Studies in Oceanography, 142, 180-196, DOI: https://doi.org/10.1016/j.dsr2.2017.05.005
» https://doi.org/10.1016/j.dsr2.2017.05.005
PAU, M., GISLER, G. & HAMMER, O. 2014. Experimental investigation of the hydrodynamics in pockmarks using particle tracking velocimetry. Geo-Marine Letters, 34, 11-19, DOI: https://doi.org/10.1007/s00367-013-0348-9
» https://doi.org/10.1007/s00367-013-0348-9
PORTILHO-RAMOS, R. C., CRUZ, A. P. S., BARBOSA, C. F., RATHBURN, A. E., MULITZA, S., VENANCIO, I. M., SCHWENK, T., RUHLEMANN, C., VIDAL, L., CHIESSI, C. M. & SILVEIRA, C. S. 2018. Methane release from the southern Brazilian margin during the last glacial. Scientific Reports, 8(1), 5948.
RAMOS, R. B., DOS SANTOS, R. F., SCHATTNER, U., FIGUEIRA, R. C. L., BÍCEGO, M. C., LOBO, F. J. & MAHIQUES, M. M. 2019. Deep pockmarks as natural sediment traps: a case study from southern Santos Basin (SW Atlantic upper slope). Geo-Marine Letters, 40(6), 989-999.
REINTHALER, T., VAN AKEN, H. M. & HERNDL, G. J. 2010. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior. Deep Sea Research Part II: Topical Studies in Oceanography, 57(16), 1572, DOI: https://doi.org/10.1016/j.dsr2.2010.02.023
» https://doi.org/10.1016/j.dsr2.2010.02.023
ROBERTS, J. M., HENRY, L. A., LONG, D. & HARTLEY, J. P. 2008. Cold-water coral reef frameworks, megafaunal communities and evidence for coral carbonate mounds on the Hatton Bank, north east Atlantic. Facies, 54, 297-316, DOI: https://doi.org/10.1007/s10347-008-0140-x
» https://doi.org/10.1007/s10347-008-0140-x
RUPPEL, C. D. & KESSLER, J. D. 2017. The interaction of climate change and methane hydrates. Reviews of Geophysics, 55(1), 126-168, DOI: https://doi.org/10.1002/2016RG000534
» https://doi.org/10.1002/2016RG000534
SÁNCHEZ, N., ZEPPILLI, D., BALDRIGHI, E., VANREUSEL, A., LAHITSIRESY, A. G., BRANDILY, C., PASTOR, L., MACHERIOTOU, L., GARCÍA-GÓMEZ, G., DUPRÉ, S. & OLU, K. 2021. A threefold perspective on the role of a pockmark in benthic faunal communities and biodiversity patterns. Deep Sea Research Part I: Oceanographic Research Papers, 167, 103425, DOI: https://doi.org/10.1016/j.dsr.2020.103425
» https://doi.org/10.1016/j.dsr.2020.103425
SANTOS, R. F., NAGAOKA, D., RAMOS, R. B., SALAROLI, A. B., TANIGUCHI, S., FIGUEIRA, R. C. L., BÍCEGO, M. C., LOBO, F. J., SCHATTNER, U. & MAHIQUES, M. M. 2018. Metal/Ca ratios in pockmarks and adjacent sediments on the SW Atlantic slope: implications for redox potential and modern seepage. Journal of Geochemical Exploration, 192, 163-173.
SCHATTNER, U., LAZAR, M., SOUZA, L. A. P., TEN BRINK, U. & MAHIQUES, M. M. 2016. Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil. Geo-Marine Letters, 36, 457-464, DOI: https://doi.org/10.1007/s00367-016-0468-0
» https://doi.org/10.1007/s00367-016-0468-0
SCHATTNER, U., LOBO, F. J., GARCÍA, M., KANARI, M., RAMOS, R. B. & MAHIQUES, M. M. 2018. A detailed look at diapir piercement onto the ocean floor: new evidence from Santos Basin, offshore Brazil. Marine Geology, 406, 98-108, DOI: https://doi.org/10.1016/j.margeo.2018.09.014
» https://doi.org/10.1016/j.margeo.2018.09.014
SMITH, D. C. & AZAM, F. 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Food Webs, 6(2), 107-114.
STEEMANN-NIELSEN, E. 1952. The use of radio-active carbon (14C) for measuring organic production in the sea. ICES Journal of Marine Science, 18(2), 117-140.
SUMIDA, P. Y. G., YOSHINAGA, M. Y., MADUREIRA, L. A. S. P. & HOVLAND, M. 2004. Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin. Marine Geology, 207(1-4), 159-167, DOI: https://doi.org/10.1016/j.margeo.2004.03.006
» https://doi.org/10.1016/j.margeo.2004.03.006
TOMMASI, L. R. 1970. On two new species of Pogonophora from the southwestern Atlantic Ocean. Papéis Avulsos de Zoologia, 23(12), 115-119.
WHEELER, A. J., BEYER, A., FREIWALD, A., HAAS, H., HUVENNE, V. A. I., KOZACHENKO, M., OLU-LE ROY, K. & OPDERBECKE, J. 2007. Morphology and environment of cold-water coral carbonate mounds on the NW European margin. International Journal of Earth Sciences, 96, 37-56, DOI: https://doi.org/10.1007/s00531-006-0130-6
Downloads
Published
Issue
Section
License
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.