First description of archaeal communities in carbonate-rich seafloor and subseafloor sediments from the Southwestern Atlantic slope

Authors

  • Amanda Gonçalves Bendia
  • Fernanda Mancini Nakamura
  • Ana Carolina de Araújo Butarelli
  • Maria Carolina Pezzo Kmit
  • Raissa Basti Ramos
  • Camila Negrão Signori
  • Rafael Andre Lourenço
  • Michel Michaelovitch de Mahiques
  • Paulo Yukio Gomes Sumida
  • Vivian Helena Pellizari

DOI:

https://doi.org/10.1590/

Keywords:

Archaeal diversity, Surface and subsurface sediments, Deep sea, Southwestern Atlantic slope

Abstract

Deep-sea sediments comprise one of the largest habitats on Earth. The archaeal groups contribute to a large fraction of the deep-sea benthic biomass, playing a key role in biogeochemical cycles. However, their diversity in deep-sea benthic ecosystems remains poorly understood, mostly because only recently novel taxa have been proposed, thus remodeling the phylogenetic tree. Despite the dificulty in obtaining cultivated representatives, the metabolic capabilities of archaea have lately been described through metagenomic data, indicating that archaeal taxa are highly versatile. Here, we aimed to reveal the diversity of archaeal communities in surface (0 to 15 cm depth) and subsurface (200 cm depth) sediments from a carbonate-rich region in the Southwestern Atlantic upper slope. We performed 16S rRNA gene sequencing, and found that the archaeal composition in surface sediments was mainly dominated by ammonia-oxidizing archaea within Nitrososphaeria class. The distribution of Nitrososphaeria ASVs (amplicon sequence variants) indicates the presence of several species or ecotypes. Contrastingly, the subsurface sediment was dominated by uncultivated anaerobic and poorly known archaea, including representatives of all supergroups (Asgard, TACK, DPANN and Euryarchaeota). These archaea have been described as having potentially diverse metabolic capabilities, including autotrophic and heterotrophic pathways, such as acetogenesis, methylotrophy, and degradation of labile and recalcitrant organic compounds. This indicates an important role in the remineralization of organic matter in the SW (Southwest) Atlantic slope. They are likely enriched due to the transport and mixing of sediments by the IWBC (Intermediate Western Boundary Current) along the continental slope. However, further studies are needed to reveal the geochemical and oceanographic drivers of the archaeal distribution. This study provides the first description of the archaeal communities in carbonate-rich sediments in the SW Atlantic slope, and adds new biodiversity insights to this geological feature, which is considered a vulnerable marine ecosystem, thus helping for future conservation strategies.

References

ANDERSON, M. J. 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences, 58(3), 626-639, DOI: https://doi.org/10.1139/f01-004

» https://doi.org/10.1139/f01-004

BAKER, B. J., ANDA, V., SEITZ, K. W., DOMBROWSKI, N., SANTORO, A. E. & LLOYD, K. G. 2020. Diversity, ecology and evolution of Archaea. Nature Microbiology, 5(7), 887-900, DOI: https://doi.org/10.1038/s41564-020-0715-z

» https://doi.org/10.1038/s41564-020-0715-z

BAKER, B. J., SAW, J. H., LIND, A. E., LAZAR, C. S., HINRICHS, K. U., TESKE, A. P. & ETTEMA, T. J. G. 2016. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nature Microbiology, 1(3), 16002, DOI: https://doi.org/10.1038/nmicrobiol.2016.2

» https://doi.org/10.1038/nmicrobiol.2016.2

BENDIA, A. G., SIGNORI, C. N., NAKAMURA, F. M., BUTARELLI, A. C. A., PASSOS, J. G., RAMOS, R. B., SOARES, L. F., DE MAHIQUES, M. M., SUMIDA, P. Y. G. & PELLIZARI, V. H. 2021. Microbial perspective on the giant carbonate ridge Alpha Crucis (Southwestern Atlantic upper slope). FEMS Microbiology Ecology, 97(8), fiab110, DOI: https://doi.org/10.1093/femsec/fiab110

» https://doi.org/10.1093/femsec/fiab110

BILÓ, T. C., SILVEIRA, I. C. A., BELO, W. C., CASTRO, B. M. & PIOLA, A. R. 2014. Methods for estimating the velocities of the Brazil Current in the pre-salt reservoir area of southeast Brazil (23° S-26° S). Ocean Dynamics, 64(10), 1431-1446, DOI: https://doi.org/10.1007/s10236-014-0761-2

» https://doi.org/10.1007/s10236-014-0761-2

BOLYEN, E., RIDEOUT, J. R., DILLON, M. R., BOKULICH, N. A., ABNET, C. C., AL-GHALITH, G. A., ALEXANDER, H., ALM, E. J., ARUMUGAM, M., ASNICAR, F., BAI, Y., BISANZ, J. E., BITTINGER, K., BREJNROD, A., BRISLAWN, C. J., BROWN, C. T., CALLAHAN, B. J., CARABALLO-RODRÍGUEZ, A. M., CHASE, J., COPE, E. K., SILVA, R., DIENER, C., DORRESTEIN, P. C., DOUGLAS, G. M., DURALL, D. M., DUVALLET, C., EDWARDSON, C. F., ERNST, M., ESTAKI, M., FOUQUIER, J., GAUGLITZ, J. M., GIBBONS, S. M., GIBSON, D. L., GONZALEZ, A., GORLICK, K., GUO, J., HILLMANN, B., HOLMES, S., HOLSTE, H., HUTTENHOWER, C., HUTTLEY, G. A., JANSSEN, S., JARMUSCH, A. K., JIANG, L., KAEHLER, B. D., KANG, K. B., KEEFE, C. R., KEIM, P., KELLEY, S. T., KNIGHTS, D., KOESTER, I., KOSCIOLEK, T., KREPS, J., LANGILLE, M. G. I., LEE, J., LEY, R., LIU, Y. X., LOFTFIELD, E., LOZUPONE, C., MAHER, M., MAROTZ, C., MARTIN, B. D., MCDONALD, D., MCIVER, L. J., MELNIK, A. V., METCALF, J. L., MORGAN, S. C., MORTON, J. T., NAIMEY, A. T., NAVAS-MOLINA, J. A., NOTHIAS, L. F., ORCHANIAN, S. B., PEARSON, T., PEOPLES, S. L., PETRAS, D., PREUSS, M. L., PRUESSE, E., RASMUSSEN, L. B., RIVERS, A., ROBESON, M. S., ROSENTHAL, P., SEGATA, N., SHAFFER, M., SHIFFER, A., SINHA, R., SONG, S. J., SPEAR, J. R., SWAFFORD, A. D., THOMPSON, L. R., TORRES, P. J., TRINH, P., TRIPATHI, A., TURNBAUGH, P. J., UL-HASAN, S., VAN DER HOOFT, J. J. J., VARGAS, F., VÁZQUEZ-BAEZA, Y., VOGTMANN, E., VON HIPPEL, M., WALTERS, W., WAN, Y., WANG, M., WARREN, J., WEBER, K. C., WILLIAMSON, C. H. D., WILLIS, A. D., XU, Z. Z., ZANEVELD, J. R., ZHANG, Y., ZHU, Q., KNIGHT, R. & CAPORASO, J. G. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857, DOI: https://doi.org/10.1038/s41587-019-0209-9

» https://doi.org/10.1038/s41587-019-0209-9

BORREL, G., BRUGÈRE, J. F., GRIBALDO, S., SCHMITZ, R. A. & MOISSL-EICHINGER, C. 2020. The host-associated archaeome. Nature Reviews Microbiology, 18(11), 622-636, DOI: https://doi.org/10.1038/s41579-020-0407-y

» https://doi.org/10.1038/s41579-020-0407-y

CALLAHAN, B. J., MCMURDIE, P. J. & HOLMES, S. P. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal, 11(12), 2639-2643, DOI: https://doi.org/10.1038/ismej.2017.119

» https://doi.org/10.1038/ismej.2017.119

CASTELLE, C. J., WRIGHTON, K. C., THOMAS, B. C., HUG, L. A., BROWN, C. T., WILKINS, M. J., FRISCHKORN, K. R., TRINGE, S. G., SINGH, A., MARKILLIE, L. M., TAYLOR, R. C., WILLIAMS, K. H. & BANFIELD, J. F. 2015. Genomic expansion of domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Current Biology, 25(6), 690-701, DOI: https://doi.org/10.1016/j.cub.2015.01.014

» https://doi.org/10.1016/j.cub.2015.01.014

CHRONOPOULOU, P. M., SHELLEY, F., PRITCHARD, W. J., MAANOJA, S. T. & TRIMMER, M. 2017. Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone. The ISME Journal, 11(6), 1386-1399, DOI: https://doi.org/10.1038/ismej.2017.6

» https://doi.org/10.1038/ismej.2017.6

CORINALDESI, C. 2015. New perspectives in benthic deep-sea microbial ecology. Frontiers in Marine Science, 2, 17, DOI: https://www.frontiersin.org/article/10.3389/fimars.2015.00017

» https://www.frontiersin.org/article/10.3389/fimars.2015.00017

COZANNET, M., BORREL, G., ROUSSEL, E., MOALIC, Y., ALLIOUX, M., SANVOISIN, A., TOFFIN, L. & ALAIN, K. 2021. New insights into the ecology and physiology of Methanomassiliicoccales from terrestrial and aquatic environments. Microorganisms, 9(1), 30, DOI: https://doi.org/10.3390/microorganisms9010030

» https://doi.org/10.3390/microorganisms9010030

D’HONDT, S., POCKALNY, R., FULFER, V. M. & SPIVACK, A. J. 2019. Subseafloor life and its biogeochemical impacts. Nature Communications, 10(1), 3519, DOI: https://doi.org/10.1038/s41467-019-11450-z

» https://doi.org/10.1038/s41467-019-11450-z

DOMBROWSKI, N., LEE, J. H., WILLIAMS, T. A., OFFRE, P. & SPANG, A. 2019. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiology Letters, 366(2), finz008, DOI: https://doi.org/10.1093/femsle/finz008

» https://doi.org/10.1093/femsle/finz008

EVANS, P. N., PARKS, D. H., CHADWICK, G. L., ROBBINS, S. J., ORPHAN, V. J., GOLDING, S. D. & TYSON, G. W. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science, 350(6259), 434-438, DOI: https://doi.org/10.1126/science.aac7745

» https://doi.org/10.1126/science.aac7745

HE, Y., LI, M., PERUMAL, V., FENG, X., FANG, J., XIE, J., SIEVERT, S. M. & WANG, F. 2016. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nature Microbiology, 1(6), 1-9, DOI: https://doi.org/10.1038/nmicrobiol.2016.35

» https://doi.org/10.1038/nmicrobiol.2016.35

HOSHINO, T., DOI, H., URAMOTO, G. I., WÖRMER, L., ADHIKARI, R. R., XIAO, N., MORONO, Y., D’HONDT, S., HINRICHS, K. U. & INAGAKI, F. 2020. Global diversity of microbial communities in marine sediment. Proceedings of the National Academy of Sciences, 117(44), 27587-27597, DOI: https://doi.org/10.1073/pnas.1919139117

» https://doi.org/10.1073/pnas.1919139117

HOSHINO, T. & INAGAKI, F. 2019. Abundance and distribution of Archaea in the subseafloor sedimentary biosphere. The ISME Journal, 13(1), 227-231, DOI: https://doi.org/10.1038/s41396-018-0253-3

» https://doi.org/10.1038/s41396-018-0253-3

IMACHI, H., NOBU, M. K., NAKAHARA, N., MORONO, Y., OGAWARA, M., TAKAKI, Y., TAKANO, Y., UEMATSU, K., IKUTA, T., ITO, M., MATSUI, Y., MIYAZAKI, M., MURATA, K., SAITO, Y., SAKAI, S., SONG, C., TASUMI, E., YAMANAKA, Y., YAMAGUCHI, T., KAMAGATA, Y., TAMAKI, H. & TAKAI, K. 2020. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature, 577(7791), 519-525, DOI: https://doi.org/10.1038/s41586-019-1916-6

» https://doi.org/10.1038/s41586-019-1916-6

KATOH, K., MISAWA, K., KUMA, K. & MIYATA, T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059-3066, DOI: https://doi.org/10.1093/nar/gkf436

» https://doi.org/10.1093/nar/gkf436

KEROU, M., PONCE-TOLEDO, R. I., ZHAO, R., ABBY, S. S., HIRAI, M., NOMAKI, H., TAKAKI, Y., NUNOURA, T., JØRGENSEN, S. L. & SCHLEPER, C. 2021. Genomes of Thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. The ISME Journal, 15(9), 2792-2808, DOI: https://doi.org/10.1038/s41396-021-00962-6

» https://doi.org/10.1038/s41396-021-00962-6

KONG, Y., LEI, H., ZHANG, Z., CHENG, W., WANG, B., PAN, F., HUANG, F., HUANG, F. & LI, W. 2021. Depth profiles of geochemical features, geochemical activities and biodiversity of microbial communities in marine sediments from the Shenhu area, the northern South China Sea. Science of The Total Environment, 779, 146233, DOI: https://doi.org/10.1016/j.scitotenv.2021.146233

» https://doi.org/10.1016/j.scitotenv.2021.146233

KRÖNINGER, L., BERGER, S., WELTE, C. & DEPPENMEIER, U. 2016. Evidence for the involvement of two heterodisulfde reductases in the energy-conserving system of Methanomassiliicoccus luminyensis. The FEBS Journal, 283(3), 472-483, DOI: https://doi.org/10.1111/febs.13594

» https://doi.org/10.1111/febs.13594

LAURO, F. M. & BARTLETT, D. H. 2008. Prokaryotic lifestyles in deep sea habitats. Extremophiles, 12(1), 15-25, DOI: https://doi.org/10.1007/s00792-006-0059-5

» https://doi.org/10.1007/s00792-006-0059-5

LAZAR, C. S., BAKER, B. J., SEITZ, K. W. & TESKE, A. P. 2017. Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. The ISME Journal, 11(5), 1118-1129, DOI: https://doi.org/10.1038/ismej.2016.189

» https://doi.org/10.1038/ismej.2016.189

LI, Y., CAO, W., WANG, Y. & MA, Q. 2019. Microbial diversity in the sediments of the southern Mariana Trench. Journal of Oceanology and Limnology, 37(3), 1024-1029, DOI: https://doi.org/10.1007/s00343-019-8131-z

» https://doi.org/10.1007/s00343-019-8131-z

LI, Y., ZHU, X., ZHANG, W., ZHU, D., ZHOU, X. & ZHANG, L. 2019. Archaeal communities in the deep-sea sediments of the South China Sea revealed by Illumina high-throughput sequencing. Annals of Microbiology, 69(8), 839-848, DOI: https://doi.org/10.1007/s13213-019-01477-4

» https://doi.org/10.1007/s13213-019-01477-4

LIN, G., HUANG, J., LU, J., SU, M., HU, B. & LIN, X. 2021. Geochemical and microbial insights into vertical distributions of genetic potential of N-cycling processes in deep-sea sediments. Ecological Indicators, 125, 107461, DOI: https://doi.org/10.1016/j.ecolind.2021.107461

» https://doi.org/10.1016/j.ecolind.2021.107461

LIU, X., LI, M., CASTELLE, C. J., PROBST, A. J., ZHOU, Z., PAN, J., LIU, Y., BANFIELD, J. F. & GU, J. D. 2018. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome, 6(1), 102, DOI: https://doi.org/10.1186/s40168-018-0488-2

» https://doi.org/10.1186/s40168-018-0488-2

LIU, X., PAN, J., LIU, Y., LI, M. & GU, J. D. 2018. Diversity and distribution of Archaea in global estuarine ecosystems. Science of The Total Environment, 637-638, 349-358, DOI: https://doi.org/10.1016/j.scitotenv.2018.05.016

» https://doi.org/10.1016/j.scitotenv.2018.05.016

LIU, X., WANG, Y. & GU, J. D. 2021. Ecological distribution and potential roles of Woesearchaeota in anaerobic biogeochemical cycling unveiled by genomic analysis. Computational and Structural Biotechnology Journal, 19, 794-800, DOI: https://doi.org/10.1016/j.csbj.2021.01.013

» https://doi.org/10.1016/j.csbj.2021.01.013

MALY, M., SCHATTNER, U., LOBO, F. J., DIAS, R. J. S., RAMOS, R. B., COUTO, D. M., SUMIDA, P. Y. G. & DE MAHIQUES, M. M. 2019. The Alpha Crucis Carbonate Ridge (ACCR): discovery of a giant ring-shaped carbonate complex on the SW Atlantic margin. Scientific Reports, 9(1), 18697, DOI: https://doi.org/10.1038/s41598-019-55226-3

» https://doi.org/10.1038/s41598-019-55226-3

MCMURDIE, P. J. & HOLMES, S. 2012. Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 235-246.

MILKOV, A. V. 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews, 66(3-4), 183-197.

NUNOURA, T., NISHIZAWA, M., KIKUCHI, T., TSUBOUCHI, T., HIRAI, M., KOIDE, O., MIYAZAKI, J., HIRAYAMA, H., KOBA, K. & TAKAI, K. 2013. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments. Environmental Microbiology, 15(11), 3087-3107, DOI: https://doi.org/10.1111/1462-2920.12152

» https://doi.org/10.1111/1462-2920.12152

OFFRE, P., SPANG, A. & SCHLEPER, C. 2013. Archaea in Biogeochemical Cycles. Annual Review of Microbiology, 67(1), 437-457, DOI: https://doi.org/10.1146/annurev-micro-092412-155614

» https://doi.org/10.1146/annurev-micro-092412-155614

ONI, O. E., SCHMIDT, F., MIYATAKE, T., KASTEN, S., WITT, M., HINRICHS, K. U. & FRIEDRICH, M. W. 2015. Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland mud area, North Sea. Frontiers in Microbiology, 6, 1290, DOI: https://www.frontiersin.org/article/10.3389/fmicb.2015.01290

» https://www.frontiersin.org/article/10.3389/fmicb.2015.01290

ORSI, W. D., VUILLEMIN, A., RODRIGUEZ, P., COSKUN, Ö. K., GOMEZ-SAEZ, G. V., LAVIK, G., MOHRHOLZ, V. & FERDELMAN, T. G. 2020. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfdic marine sediments. Nature Microbiology, 5(2), 248-255, DOI: https://doi.org/10.1038/s41564-019-0630-3

» https://doi.org/10.1038/s41564-019-0630-3

PARADA, A. E., NEEDHAM, D. M. & FUHRMAN, J. A. 2016. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18(5), 1403-1414, DOI: https://doi.org/10.1111/1462-2920.13023

» https://doi.org/10.1111/1462-2920.13023

PRICE, M. N., DEHAL, P. S. & ARKIN, A. P. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26(7), 1641-1650, DOI: https://doi.org/10.1093/molbev/msp077

» https://doi.org/10.1093/molbev/msp077

RAMÍREZ, G. A., MCKAY, L. J., FIELDS, M. W., BUCKLEY, A., MORTERA, C., HENSEN, C., RAVELO, A. C. & TESKE, A. P. 2020. The Guaymas Basin subseafloor sedimentary archaeome reflects complex environmental histories. IScience, 23(9), 101459, DOI: https://doi.org/10.1016/j.isci.2020.101459

» https://doi.org/10.1016/j.isci.2020.101459

RAMOS, R. B., SANTOS, R. F., SCHATTNER, U., FIGUEIRA, R. C. L., BÍCEGO, M. C., LOBO, F. J. & DE MAHIQUES, M. M. 2020. Deep pockmarks as natural sediment traps: a case study from southern Santos Basin (SW Atlantic upper slope). Geo-Marine Letters, 40(6), 989-999, DOI: https://doi.org/10.1007/s00367-019-00617-8

» https://doi.org/10.1007/s00367-019-00617-8

ROMANO, R. G., BENDIA, A. G., MOREIRA, J. C. F., FRANCO, D. C., SIGNORI, C. N., YU, T., WANG, F., JOVANE, L. & PELLIZARI, V. H. 2021. Bathyarchaeia occurrence in rich methane sediments from a Brazilian ría. Estuarine, Coastal and Shelf Science, 263, 107631, DOI: https://doi.org/10.1016/j.ecss.2021.107631

» https://doi.org/10.1016/j.ecss.2021.107631

SOUTELINO, R. G., GANGOPADHYAY, A. & SILVEIRA, I. C. A. 2013. The roles of vertical shear and topography on the eddy formation near the site of origin of the Brazil Current. Continental Shelf Research, 70, 46-60, DOI: https://doi.org/10.1016/j.csr.2013.10.001

» https://doi.org/10.1016/j.csr.2013.10.001

SPANG, A., SAW, J. H., JØRGENSEN, S. L., ZAREMBANIEDZWIEDZKA, K., MARTIJN, J., LIND, A. E., VAN EIJK, R., SCHLEPER, C., GUY, L. & ETTEMA, T. J. G. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature, 521(7551), 173-179, DOI: https://doi.org/10.1038/nature14447

» https://doi.org/10.1038/nature14447

SUMIDA, P. Y., PELLIZARI, V. H., LOURENÇO, R. A., SIGNORI, C. N., BENDIA, A. G., CARRERETTE, O., NAKAMURA, F. M., RAMOS, R. B., BERGAMO G., SOUZA, B. H. M., BUTARELLI, A. C. A., PASSOS, J. G., DIAS, R. J. S., MALY, M., BANHA, T. N., GÜTH, A. Z., SOARES, L. F., PERUGINO, P. D. N., SANTOS, F. R., SANTANA, F. R. & DE MAHIQUES, M. M. D. 2022. Seep hunting in the Santos Basin, Southwest Atlantic: sampling strategy and employed methods of the multidisciplinary cruise BIOIL 1. Ocean and Coastal Research, 70(Suppl 2), e22031, DOI: https://doi.org/10.1590/2675-2824070.22077pygs

» https://doi.org/10.1590/2675-2824070.22077pygs

TAHON, G., GEESINK, P. & ETTEMA, T. J. G. 2021. Expanding archaeal diversity and phylogeny: past, present, and future. Annual Review of Microbiology, 75(1), 359-381, DOI: https://doi.org/10.1146/annurev-micro-040921-050212

» https://doi.org/10.1146/annurev-micro-040921-050212

TREVIZANI, T. H., NAGAI, R. H., FIGUEIRA, R. C. L., SUMIDA, P. Y. G. & DE MAHIQUES, M. M. 2022. Chemical characterization of deep-sea corals from the continental slope of Santos Basin (southeastern Brazilian upper margin). Ocean and Coastal Research, 70(Suppl 2), e22018, DOI: http://doi.org/10.1590/2675-2824070.21108tht

» http://doi.org/10.1590/2675-2824070.21108tht

VARLIERO, G., BIENHOLD, C., SCHMID, F., BOETIUS, A. & MOLARI, M. 2019. Microbial diversity and connectivity in deep-sea sediments of the South Atlantic Polar Front. Fron -tiers in Microbiology, 10, 665, DOI: https://www.frontiersin.org/article/10.3389/fmicb.2019.00665

» https://www.frontiersin.org/article/10.3389/fmicb.2019.00665

VIANA, A. R., FAUGÈRES, J. C. & STOW, D. A. V. 1998. Bottom-current-controlled sand deposits — a review of modern shallow- to deep-water environments. Sedimentary Geology, 115(1), 53-80, DOI: https://doi.org/10.1016/S0037-0738(97)00087-0

» https://doi.org/10.1016/S0037-0738(97)00087-0

VUILLEMIN, A., WANKEL, S. D., COSKUN, Ö. K., MAGRITSCH, T., VARGAS, S., ESTES, E. R., SPIVACK, A. J., SMITH, D. C., POCKALNY, R., MURRAY, R. W., D’HONDT, S. & ORSI, W. D. 2019. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances, 5(6), eaaw4108, DOI: https://doi.org/10.1126/sciadv.aaw4108

» https://doi.org/10.1126/sciadv.aaw4108

WANG, J., KAN, J., ZHANG, XIAODONG, XIA, Z., ZHANG, XUECHENG, QIAN, G., MIAO, Y., LENG, X. & SUN, J. 2017. Archaea dominate the ammonia-oxidizing community in deep-sea sediments of the Eastern Indian Ocean—from the Equator to the Bay of Bengal. Frontiers in Microbiology, 8, 415, DOI: https://www.frontiersin.org/article/10.3389/fmicb.2017.00415

» https://www.frontiersin.org/article/10.3389/fmicb.2017.00415

YIN, X., CAI, M., LIU, Y., ZHOU, G., RICHTER-HEITMANN, T., AROMOKEYE, D. A., KULKARNI, A. C., NIMZYK, R., CULLHED, H., ZHOU, Z., PAN, J., YANG, Y., GU, J. D., ELVERT, M., LI, M. & FRIEDRICH, M. W. 2021. Subgroup level differences of physiological activities in marine Lokiarchaeota. The ISME Journal, 15(3), 848-861, DOI: https://doi.org/10.1038/s41396-020-00818-5

» https://doi.org/10.1038/s41396-020-00818-5

YU, T., LIANG, Q., NIU, M. & WANG, F. 2017. High occurrence of Bathyarchaeota (MCG) in the deep-sea sediments of South China Sea quantified using newly designed PCR primers. Environmental Microbiology Reports, 9(4), 374-382, DOI: https://doi.org/10.1111/1758-2229.12539

» https://doi.org/10.1111/1758-2229.12539

ZAREMBA-NIEDZWIEDZKA, K., CACERES, E. F., SAW, J. H., BÄCKSTRÖM, D., JUZOKAITE, L., VANCAESTER, E., SEITZ, K. W., ANANTHARAMAN, K., STARNAWSKI, P., KJELDSEN, K. U., STOTT, M. B., NUNOURA, T., BANFIELD, J. F., SCHRAMM, A., BAKER, B. J., SPANG, A. & ETTEMA, T. J. G. 2017. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 541(7637), 353-358, DOI: https://doi.org/10.1038/nature21031

» https://doi.org/10.1038/nature21031

ZHAO, R., DAHLE, H., RAMÍREZ, G. A. & JØRGENSEN, S. L. 2020. Indigenous ammonia-oxidizing archaea in oxic subseafloor oceanic crust. MSystems, 5(2), e00758-19, DOI: https://doi.org/10.1128/mSystems.00758-19

» https://doi.org/10.1128/mSystems.00758-19

ZHAO, R., HANNISDAL, B., MOGOLLON, J. M. & JØRGENSEN, S. L. 2019. Nitrifer abundance and diversity peak at deep redox transition zones. Scientific Reports, 9(1), 8633, DOI: https://doi.org/10.1038/s41598-019-44585-6

» https://doi.org/10.1038/s41598-019-44585-6

ZHONG, H., LEHTOVIRTA-MORLEY, L., LIU, J., ZHENG, Y., LIN, H., SONG, D., TODD, J. D., TIAN, J. & ZHANG, X. H. 2020. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome, 8(1), 78, DOI: https://doi.org/10.1186/s40168-020-00849-2

» https://doi.org/10.1186/s40168-020-00849-2

ZHOU, Z., LIU, Y., LLOYD, K. G., PAN, J., YANG, Y., GU, J. D. & LI, M. 2019. Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). The ISME Journal, 13(4), 885-901, DOI: https://doi.org/10.1038/s41396-018-0321-8

» https://doi.org/10.1038/s41396-018-0321-8

ZHUANG, G. C., HEUER, V. B., LAZAR, C. S., GOLDHAMMER, T., WENDT, J., SAMARKIN, V. A., ELVERT, M., TESKE, A. P., JOYE, S. B. & HINRICHS, K. U. 2018. Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. Geochimica et Cosmochimica Acta, 224, 171-186, DOI: https://doi.org/10.1016/j.gca.2017.12.024

» https://doi.org/10.1016/j.gca.2017.12.024

ZOU, D., LIU, H. & LI, M. 2020. Community, distribution, and ecological roles of estuarine Archaea. Frontiers in Microbiology, 11, 2060, DOI: https://doi.org/10.3389/fmicb.2020.02060

» https://doi.org/10.3389/fmicb.2020.02060

Downloads

Published

04.01.2023

How to Cite

First description of archaeal communities in carbonate-rich seafloor and subseafloor sediments from the Southwestern Atlantic slope. (2023). Ocean and Coastal Research, 70(Suppl. 2). https://doi.org/10.1590/