Neotectonic control of shelf valley formation on the southern Pernambuco continental shelf - Brazil

Authors

  • Luis Felipe de Melo Tassinari
  • Tereza Cristina Medeiros de Araújo
  • José Antônio Barbosa

DOI:

https://doi.org/10.1590/

Keywords:

Shelf Valleys, Geophysics, Middle Miocene, High Angle Faults, Neotectonics

Abstract

Formed during marine regression periods, shelf valleys (SVs) are preterit river flows on the exposed continental shelf. This study investigates the influence of tectonic activity on forming these important morphological features. This research combines bathymetric, magnetometry, and seismic data to analyze the role of tectonic events in SV genesis and positioning. The bathymetric dataset provides information on SV locations and geometries along the continental shelf, whereas the 2D seismic sections illustrate that SVs formed above post-rift faults that reached Quaternary deposits. Aeromagnetic data indicates that the shallow and deep structures of the basement and sedimentary column controlled SV locations and evolution. The multi-data integration demonstrates a strong correlation between neotectonic structures and SV location and geometries from the inner shelf (−25 m) to the shelf break (−55 m). The analysis of the 2D seismic data indicated that high-angle faults, formed under a strikeslip tectonic regime, primarily affected the Middle Miocene deposits beneath the shelf valleys. The formation of “negative flower pattern structures” was identified as a primary structural mechanism that contributed to SV formation. Reactivation events that occurred from the Late Cretaceous onwards, gave rise to these faults, which control SV formation and the capture of preterit drainage on the exposed continental shelf. The SV geometries display straight patterns and abrupt changes in direction (90°) due to the interplay of the NE-SW and NW-SE aligned faults. The results reinforce the importance of considering tectonic activity in the formation and evolution of shelf valleys.

References

Andrades-Filho, C. de O., Rossetti, D. F., Bezerra, F. H. R., Medeiros, W. E., Valeriano, M. M., Cremon, É. H. & Oliveira, R. G. 2014. Mapping Neogene and Quaternary sedimentary deposits in northeastern Brazil by integrating geophysics, remote sensing and geological field data. Journal of South American Earth Sciences, 56, 316–327. DOI: https://doi.org/10.1016/j.jsames.2014.09.018.

Araújo Júnior, J. C. M., Lima Moura, W. A., Silva, I. M. G., Correia Filho, O. J. & Souza Neto, J. A. 2020. Caracterização Estrutural da Região Central do Graben do Cupe, Bacia Sedimentar de Pernambuco: Implicações para o Padrão Atual da Rede de Drenagem. Revista Brasileira de Geografia Física, 13(5), 2355–2370.

Araújo, T. C. M., Seoane, J. C. S. & Coutinho, P. N. 2004. Geomorfologia da plataforma continental de Pernambuco. In: Oceanografia: um cenário tropical. (pp. 39–57). Recife: Edições Bagaço.

Barbosa, J. A., Maia, M. F. B., Filho, M. L., Magalhaes, J. R. & Correia, O. 2014. Seismic Stratigraphy of the Onshore Portion of Pernambuco Basin, Evidence of Breakup During Middle Albian for the South Atlantic Rift in Northeast Brazil. In: AAPG Annual Convention and Exhibition. Houston.

Bezerra, F. H. R., Araujo, R., Maciel, I., Cezar Nogueira, F., Balsamo, F., Storti, F., Souza, J. A. & Carvalho, B. 2017. The role of major rift faults in the evolution of deformation bands in the Rio do Peixe Basin, Brazil. In: Proceedings from the 19th EGU General Assembly (p. 5438). Vienna.

Bezerra, F. H. R., Rossetti, D. F., Oliveira, R. G., Medeiros, W. E., Neves, B. B. B., Balsamo, F., Nogueira, F. C. C., Dantas, E. L., Andrades Filho, C. & Góes, A. M. 2014. Neotectonic reactivation of shear zones and implications for faulting style and geometry in the continental margin of NE Brazil. Tectonophysics, 614, 78–90. DOI: https://doi.org/10.1016/j.tecto.2013.12.021.

Briggs, I. C. 1974. Machine contouring using minimum curvature. Geophysics, 39(1), 39–48. DOI: https://doi.org/10.1190/1.1440410.

Buarque, B. V., Barbosa, J. A., Magalhães, J. R. G., Oliveira, J. T. C. & Correia Filho, O. J. 2016. Postrift volcanic structures of the Pernambuco Plateau, northeastern Brazil. Journal of South American Earth Sciences, 70, 251–267. DOI: https://doi.org/10.1016/j.jsames.2016.05.014.

Caixeta, J. M., Junior, D. L. M., Ferreira, T. S. & Romeiro, M. A. T. 2017. O desenvolvimento da margem rifteada vulcânica albiana no Nordeste brasileiro e seu perfil para a geração de petróleo. Boletim de Geociências, 23(1/2).

Camargo, J. M. R., Araújo, T. C. M., Ferreira, B. P. & Maida, M. 2015. Topographic features related to recent sea level history in a sediment starved tropical shelf: Linking the past, present and future. Regional Studies in Marine Science, 2, 203–211. DOI: https://doi.org/10.1016/j.rsma.2015.10.009.

Correia Filho, O. J., Barbosa, J. A., Tavares, B., Silva, H. A., Monteiro, K. A., Fabin, C. E. G., Oliveira, J. T. C., Santana, F. R. & Silva, S. M. 2019. Reativação Tectônica Quaternária no Domínio Sul da Província Borborema, NE do Brasil: Integração de Dados Morfométricos, Geológicos e Geofísicos da Bacia do Rio Una. Anuário do instituto de Geociências, 42(4), 219–237. DOI: https://doi.org/ 10.11137/2019_4_219_237.

Ferreira, F. J. F., Castro, L. G., Bongiolo, A. B. S., Souza, J. & Romeiro, M. A. T. 2011. Enhancement of the total horizontal gradient of magnetic anomalies using tilt derivatives: Part II — Application to real data. In: SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists. DOI: https://doi.org/10.1190/1.3628216.

Ferreira, F. J. F., Souza, J., Bongiolo, A. B. S. & Castro, L. G. 2013. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78(3), J33–J41. DOI: https://doi.org/10.1190/geo2011-0441.1.

Gandini, R., Rossetti, D. F., Netto, R. G., Bezerra, F. H. R. & Góes, A. M. 2014. Neotectonic evolution of the Brazilian northeastern continental margin based on sedimentary facies and ichnology. Quaternary Research, 82(2), 462–472. DOI: https://doi.org/10.1016/j.yqres.2014.07.003.

Glover, C. & Robertson, A. 1998. Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics, 298(1–3), 103–132. DOI: https://doi.org/10.1016/s0040-1951(98)00180-2.

Goes, E. R., Brown, C. J. & Araújo, T. C. 2019. Geomorphological Classification of the Benthic Structures on a Tropical Continental Shelf. Frontiers in Marine Science, 6. DOI: https://doi.org/10.3389/fmars.2019.00047.

Hanebuth, T. J. J., Stattegger, K., Schimanski, A., Lüdmann, T. & Wong, H. K. 2003. Late Pleistocene forced-regressive deposits on the Sunda Shelf (Southeast Asia). Marine Geology, 199(1–2), 139–157. DOI: https://doi.org/10.1016/s0025-3227(03)00129-4.

Neotectonics control on shelf valleys formation Ocean and Coastal Research 2024, v72:e24002 14 Tassinari et al. Harding, T. P. 1985. Seismic Characteristics and Identification of Negative Flower Structures, Positive Flower Structures, and Positive Structural Inversion. AAPG Bulletin, 69(4), 582–600. DOI: https://doi.org/10.1306/ad462538-16f7-11d7-8645000102c1865d.

Harris, C. K., Butman, B. & Traykovski, P. 2003. Winter-time circulation and sediment transport in the Hudson Shelf Valley. Continental Shelf Research, 23(8), 801–820. DOI: https://doi.org/10.1016/s0278-4343(03)00025-6.

Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. 2014. Geomorphology of the oceans. Marine Geology, 352, 4–24. DOI: https://doi.org/10.1016/j.margeo.2014.01.011.

Harris, P. T. & Whiteway, T. 2011. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology, 285(1–4), 69–86. DOI: https://doi.org/10.1016/j.margeo.2011.05.008.

Henderson, R. G. & Zietz, I. 1949. The upward continuation of anomalies in total magnetic intensity fields. Geophysics, 14(4), 517–534. DOI: https://doi.org/10.1190/1.1437560.

Kempf, M. 1970. A Plataforma Continental de Pernambuco (Brasil): Nota Preliminar sobre a Natureza do Fundo. Tropical Oceanography, 9(1). DOI: https://doi.org/10.5914/tropocean.v9i1.2522.

Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences, 111(43), 15296–15303. DOI: https://doi.org/10.1073/pnas.1411762111.

Lea, D. W., Martin, P. A., Pak, D. K. & Spero, H. J. 2002. Reconstructing a 350ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core. Quaternary Science Reviews, 21(1–3), 283–293. DOI: https://doi.org/10.1016/s0277-3791(01)00081-6.

Li, J., Li, W., Alves, T. M., Rebesco, M., Wang, X., Li, S., Sun, J. & Zhan, W. 2023. Controls on the morphology of closely spaced submarine canyons incising the continental slope of the northern South China Sea. Geomorphology, 432, 108712. DOI: https://doi.org/10.1016/j.geomorph.2023.108712.

Li, W., Alves, T. M., Rebesco, M., Sun, J., Li, J., Li, S. & Wu, S. 2020. The Baiyun Slide Complex, South China Sea: A modern example of slope instability controlling submarine-channel incision on continental slopes. Marine and Petroleum Geology, 114, 104231. DOI: https://doi.org/10.1016/j.marpetgeo.2020.104231.

Maia, R. & Bezerra, F. 2020a. Neotectonics and River Valleys. In: Structural Geomorphology in Northeastern Brazil (pp. 101–114). New York: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-13311-5_7.

Maia, R. & Bezerra, F. 2020b. The Paradigm of Stable Intraplate Regions and Neotectonics in Northeastern Brazil. In: Structural Geomorphology in Northeastern Brazil (pp. 1–13). New York: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-

-5_1.

Manso, V. A. V., Corrêa, I. C. S. & Guerra, N. 2003. Morfologia e Sedimentologia da Plataforma Continental Interna entre as Praias Porto de Galinhas e Campos - Litoral Sul de Pernambuco, Brasil. Pesquisas Em Geociências, 30(2),17–25. DOI: https://doi.org/10.22456/1807-9806.19587.

Manso, V., Valença, L., Coutinho, P. & Guerra, N. 2004. Sedimentologia da plataforma continental (pp. 59–86). Recife: Bagaço. Matos, R. M. D. 1999. History of the northeast Brazilian rift system: kinematic implications for the break-up between Brazil and West Africa. Geological Society, London, Special Publications, 153(1), 55–73. DOI: https://doi.org/10.1144/gsl.sp.1999.153.01.04.

Matos, R. M. D., Medeiros, W. E., Sá, E. F. J. de, Almeida, C. B., Norton, I. & Córdoba, V. C. 2021. A solution to the Albian fit challenge between the South American and African plates based on key magmatic and sedimentary events late in the rifting phase in the Pernambuco and Paraíba basins. Marine and Petroleum Geology, 128, 105038. DOI: https://doi.org/10.1016/j.marpetgeo.2021.105038.

Micallef, A., Mountjoy, J. J., Barnes, P. M., Canals, M. & Lastras, G. 2014. Geomorphic response of submarine canyons to tectonic activity: Insights from the Cook Strait canyon system, New Zealand. Geosphere, 10(5), 905–929. DOI: https://doi.org/10.1130/ges01040.1.

Miller, H. G. & Singh, V. 1994. Potential field tilt—a new concept for location of potential field sources. Journal of Applied Geophysics, 32(2–3), 213–217. DOI: https://doi.org/10.1016/0926-9851(94)90022-1.

Nicchio, M. A., Balsamo, F., Cifelli, F., Nogueira, F. C. C., Aldega, L., Bezerra, F. H. R., Vasconcelos, D. L. & Souza, J. A. B. 2022. An Integrated Structural and Magnetic Fabric Study to Constrain the Progressive Extensional Tectonics of the Rio do Peixe Basin, Brazil. Tectonics,

(10). DOI: https://doi.org/10.1029/2022tc007244.

Nogueira, J. M. M., Hutchings, P. A. & Carrerette, O. 2015. Terebellidae (Annelida, Terebelliformia) from the Lizard Island Group. Zootaxa, 4019(1), 484–576. DOI: https://doi.org/10.11646/zootaxa.4019.1.18.

Peulvast, J.-P. & Bétard, F. 2015. A history of basin inversion, scarp retreat and shallow denudation: The Araripe basin as a keystone for understanding long-term landscape evolution in NE Brazil. Geomorphology, 233, 20–40. DOI: https://doi.org/10.1016/j.geomorph.2014.10.009.

Peulvast, J.-P., Sales, V. C., Bezerra, F. H. R. & Betard, F. 2006. Landforms and Neotectonics in the Equatorial Passive Margin of Brazil. Geodinamica Acta, 19(1), 51–71. DOI: https://doi.org/10.3166/ga.19.51-71.

Riccomini, C. & Assumpção, M. 1999. Quaternary tectonics in Brazil. Episodes Journal of International Geoscience, 22(3), 221–225.

Rossetti, D. F., Bezerra, F. H. R. & Dominguez, J. M. L. 2013. Late Oligocene–Miocene transgressions along the equatorial and eastern margins of Brazil. Earth-Science Reviews, 123, 87–112. DOI: https://doi.org/10.1016/j.earscirev.2013.04.005.

Rossetti, D. F., Bezerra, F. H. R., Góes, A. M. & Neves, B. B. B. 2011. Sediment deformation in Miocene and post-Miocene strata, Northeastern Brazil: Evidence for paleoseismicity in a passive margin. Sedimentary Geology, 235(3–4), 172–187. DOI: https://doi.org/10.1016/j.sedgeo.2010.02.005.

Neotectonics control on shelf valleys formation Ocean and Coastal Research 2024, v72:e24002 15 Tassinari et al. Silva, M. V. B., Ferreira, B., Maida, M., Queiroz, S., Silva, M., Varona, H. L., Araújo, T. C. M. & Araújo, M. 2022. Flowtopography interactions in the western tropical Atlantic boundary off Northeast Brazil. Journal of Marine Systems, 227, 103690. DOI: https://doi.org/10.1016/j.jmarsys.2021.103690.

Silveira, C. B. L., Strenzel, G. M. R., Maida, M., Araújo, T. C. M. & Ferreira, B. P. 2020. Multiresolution Satellite-Derived Bathymetry in Shallow Coral Reefs: Improving Linear Algorithms with Geographical Analysis. Journal of Coastal Research, 36(6), 1247–1265. DOI: https://doi.org/10.2112/jcoastres-d-19-00029.1

Souza, C. M. P., Lima, C. C. U., Costa, L. M., Veloso, G. V., Gomes, R. L., Leite, M. E. & FernandesFilho, E. I. 2022. Geomorphic indices, machine learning and osl-palynology chronology to assess neotectonic deformation in the continental margin – Northeastern Brazil. Journal of South American Earth Sciences, 118, 103931. DOI: https://doi.org/10.1016/j.jsames.2022.103931.

Swift, D. J. P., Moir, R. & Freeland, G. L. 1980. Quaternary rivers on the New Jersey shelf: Relation of seafloor to buried valleys. Geology, 8(6), 276–280.

Tavares, A. C., Castro, D. L., Clausen, O. R., Bezerra, F. H. R., Sousa, M. O. L., Gomes, M. P., Vital, H. & Oliveira, D. C. 2022. Continental-scale structural heritage from rift extension to postrift inversion: Implications for the central Brazilian Equatorial Margin evolution. Tectonophysics, 837, 229446. DOI: https://doi.org/10.1016/j.tecto.2022.229446.

Verduzco, B., Fairhead, J. D., Green, C. M. & MacKenzie, C. 2004. New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2), 116–119. DOI: https://doi.org/10.1190/1.1651454.

Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E. & Labracherie, M. 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 21(1–3), 295–305. DOI:

https://doi.org/10.1016/s0277-3791(01)00101-9.

Woodcock, N. H. & Rickards, B. 2003. Transpressive duplex and flower structure: Dent Fault System, NW England. Journal of Structural Geology, 25(12), 1981–1992. DOI: https://doi.org/10.1016/s0191-8141(03)00057-9.

Xiao, C., Zhang, W. & Chen, Y. 2021. Impact of Shelf Valleys on the Spread of Surface-Trapped River Plumes. Journal of Physical Oceanography, 51(1), 247–266. DOI: https://doi.org/10.1175/jpo-d-20-0098.1.

Ziegler, P. A. & Cloetingh, S. 2004. Dynamic processes controlling evolution of rifted basins. Earth-Science Reviews, 64(1–2), 1–50. DOI: https://doi.org/10.1016/s0012-8252(03)00041-2.

Downloads

Published

2024-04-10

How to Cite

Neotectonic control of shelf valley formation on the southern Pernambuco continental shelf - Brazil. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/