Sea-air CO2 fluxes along the Brazilian continental margin
DOI:
https://doi.org/10.1590/Keywords:
Atlantic Ocean, Blue Amazon, Carbonate system, CO2 source or sink, Brazilian marine ecoregions.Abstract
Measurements of the marine carbonate system on tropical and subtropical continental margins are poorly
distributed in space and time, with many uncertainties persisting regarding the role of carbon exchanges at the
ocean-atmosphere interface in these areas. To calculate sea-to-air CO2
fluxes in Marine Ecoregions along the
Brazilian continental margin (4°N to 34°S), we used data from the Surface Ocean CO2
Atlas (SOCAT v2020),
collected up to 400 km from the coast, at the surface (5 m), between 1991 and 2018, with the aim of investigating
the role of ecoregions as potential sinks or sources of atmospheric CO2
. The temperature and salinity of seawater
presented variability in the north-south direction mainly because of the broad latitudinal range, reflecting typical
patterns of tropical (T = 27.4°C ±1.49; S = 36.4 ±1.91) and subtropical waters (T = 22.8°C ±3.41; S = 35 ±2.91), in
addition to the greater or lesser influence of river inputs in each ecoregion. The pCO2
values in the surface waters
varied from 121.81 (Amazon) to 478.92 µatm (Eastern), differing significantly between ecoregions and showing
an expected decadal increasing trend, both in the atmosphere and in the seawater. The calculated values of CO2
fluxes showed non-homogeneous spatio-temporal variations, from -24.37 mmol m-2 d-1 (Rio Grande) to 9.87 mmol
m- 2 d-1 (Southeastern). Throughout the analyzed time series, we observed that the Northeast, Amazon and Eastern
ecoregions acted predominantly as sources of CO2
and the Southeastern ecoregions and, mainly, Rio Grande,
acted predominantly as sinks of atmospheric CO2
References
ABRIL, G., DEBORDE, J., SAVOYE, N., MATHIEU, F.,
MOREIRA-TURCQ, P., ARTIGAS, F., MEZIANE, T.,
TAKIYAMA, L. R., SOUZA, M. S. & SEYLER, P. 2013.
Export of 13C-depleted dissolved inorganic carbon from
a tidal forest bordering the Amazon estuary. Estuarine,
Coastal Shelf Science, 129, 23-27, DOI: https://doi.
org/10.1016/j.ecss.2013.06.020
ABRIL, G., MARTINEZ, J. M., ARTIGAS, L. F., MOREIRA-
-TURCQ, P., BENEDETTI, M. F., VIDAL, L., MEZIANE,
T., KIM, J. H., BERNARDES, M. C., SAVOYE, N., DEBORDE, J., SOUZA, E. L., ALBÉRIC, P., SOUZA, M.
F. & ROLAND, F. 2014. Amazon River carbon dioxide
outgassing fuelled by wetlands. Nature, 505, 395-398,
DOI: https://doi.org/10.1038/nature12797
CO2
fluxes in Brazilian marine ecoregions
Ocean and Coastal Research 2023, v71(suppl 2):e23017 14
Affe et al.
ARAUJO, M., NORIEGA, C., MEDEIROS, C., LEFÈVRE,
N., IBÁNHEZ, J. S. P., MONTES, M. F., SILVA, A. C.
& SANTOS, M. L., 2019. On the variability in the CO2
system and water productivity in the western tropical
Atlantic off North and Northeast Brazil. Journal of Marine Systems, 189, 62-77, DOI: https://doi.org/10.1016/j.
jmarsys.2018.09.008
ATLAS, R., HOFFMAN, R. N., ARDIZZONE, J., LEIDNER,
S. M., JUSEM, J. C., SMITH, D. K. & GOMBOS, D.
A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bulletin of the American Meteorological Society, 92(2), 157-174, DOI: https://doi.
org/10.1175/2010BAMS2946.1
BAKKER, D. C. E., PFEIL, B., LANDA, C. S., METZL, N.,
O’BRIEN, K. M., OLSEN, A., SMITH, K., COSCA, C.,
HARASAWA, S., JONES, S. D., NAKAOKA, S., NOJIRI, Y., SCHUSTER, U., STEINHOFF, T., SWEENEY,
C., TAKAHASHI, T., TILBROOK, B., WADA, C., WANNINKHOF, R., ALIN, S. R., BALESTRINI, C. F., BARBERO, L., BATES, N. R., BIANCHI, A. A., BONOU,
F., BOUTIN, J., BOZEC, Y., BURGER, E. F., CAI, W.
J., CASTLE, R. D., CHEN, L., CHIERICI, M., CURRIE, K., EVANS, W., FEATHERSTONE, C., FEELY, R.
A., FRANSSON, A., GOYET, C., GREENWOOD, N.,
GREGOR, L., HANKIN, S., HARDMAN-MOUNTFORD,
N. J., HARLAY, J., HAUCK, J., HOPPEMA, M., HUMPHREYS, M. P., HUNT, C. W., HUSS, B., IBÁNHEZ, J.
S. P., JOHANNESSEN, T., KEELING, R., KITIDIS, V.,
KÖRTZINGER, A., KOZYR, A., KRASAKOPOULOU, E.,
KUWATA, A., LANDSCHÜTZER, P., LAUVSET, S. K.,
LEFÈVRE, N., LO MONACO, C., MANKE, A., MATHIS,
J. T., MERLIVAT, L., MILLERO, F. J., MONTEIRO, P.
M. S., MUNRO, D. R., MURATA, A., NEWBERGER, T.,
OMAR, A. M., ONO, T., PATERSON, K., PEARCE, D.,
PIERROT, D., ROBBINS, L. L., SAITO, S., SALISBURY,
J., SCHLITZER, R., SCHNEIDER, B., SCHWEITZER,
R., SIEGER, R., SKJELVAN, I., SULLIVAN, K.F., SUTHERLAND, S. C., SUTTON, A. J., TADOKORO, K.,
TELSZEWSKI, M., TUMA, M., VAN HEUVEN, S. M. A.
C., VANDEMARK, D., WARD, B., WATSON, A. J. & XU,
S. 2020. A multi-decade record of high-quality fCO2
data
in version 3 of the Surface Ocean CO2
Atlas (SOCAT).
Earth System Science Data, 8(2), 383-413, DOI: https://
doi.org/10.5194/essd-8-383-2016
BAUER, J. E., CAI, W. J., RAYMOND, P. A., BIANCHI, T.
S., HOPKINSON, C. S. & REGNIER, P. A. G. 2013.
The changing carbon cycle of the coastal ocean. Nature, 504, 61-70, DOI: https://doi.org/10.1038/nature12857
BERNARDES, M., KNOPPERS, B., REZENDE, C.,
SOUZA, W. & OVALLE, A. 2012. Land-sea interface features of four estuaries on the South America
Atlantic coast. Brazilian Journal of Biology, 72(Suppl
, S761-S774, DOI: https://doi.org/10.1590/S1519-
BORGES, A. V., DELILLE, B. & FRANKIGNOULLE, M. 2005. Budgeting sinks and sources of CO2
in the coastal ocean: diversity of ecosystems
counts: coastal CO2 sinks and sources. Geophysical Research Letters, 32(14), 1-4, DOI: https://doi.
org/10.1029/2005GL023053
BRANDINI, F. P., NOGUEIRA, M., SIMIÃO, M., CODINA,
J. C. U. & NOERNBERG, M. A. 2013. Deep chlorophyll
maximum and plankton community response to oceanic
bottom intrusions on the continental shelf in the South
Brazilian Bight. Continental Shelf Research, 89, 61-75,
DOI: https://doi.org/10.1016/j.csr.2013.08.002
CAI, W. J., XU, Y. Y., FEELY, R.A., WANNINKHOF, R., JÖNSSON, B., ALIN, S. R., BARBERO, L., CROSS, J.N.,
AZETSU-SCOTT, K., FASSBENDER, A. J., CARTER,
B. R., JIANG, L. Q., PEPIN, P., CHEN, B., HUSSAIN, N.,
REIMER, J. J., XUE, L., SALISBURY, J. E., HERNÁNDEZ-AYÓN, J. M., LANGDON, C., LI, Q., SUTTON, A.
J., CHEN, C. T. A. & GLEDHILL, D. K. 2020. Controls on
surface water carbonate chemistry along North American
ocean margins. Nature Communications, 11, 2691, DOI:
https://doi.org/10.1038/s41467-020-16530-z
CALADO, L., SILVEIRA, I. C. A., GANGOPADHYAY, A. & CASTRO, B. M. 2010. Eddy-induced upwelling off Cape São
Tomé (22°S, Brazil). Continental Shelf Research, 30, 1181-
, DOI: https://doi.org/10.1016/j.csr.2010.03.007
CAMPOS, E. J. D., PIOLA, A. R., MATANO, R. P. & MILLER, J. L. 2008. PLATA: a synoptic characterization
of the southwest Atlantic shelf under influence of the
Plata River and Patos Lagoon outflows. Continental
Shelf Research, 28(13), 1551-1555, DOI: https://doi.
org/10.1016/j.csr.2008.03.007
CARVALHO, A. C. O., KERR, R., TAVANO, V. M. & MENDES,
C. R. B. 2022. The southwestern South Atlantic continental
shelf biogeochemical divide. Biogeochemistry, 159(2), 139-
, DOI: https://doi.org/10.1007/s10533-022-00918-8
CARVALHO, A. C. O., MARINS, R. V., DIAS, F. J. S., REZENDE, C. E., LEFÈVRE, N., CAVALCANTE, M. S. &
ESCHRIQUE, S. A. 2017. Air-sea CO2
fluxes for the
Brazilian northeast continental shelf in a climatic transition region. Journal of Marine Systems, 173, 70-80,
DOI: https://doi.org/10.1016/j.jmarsys.2017.04.009
CASTRO, B. M., BRANDINI, F. P., DOTTORI, M. & FORTES, J. F. 2017. A Amazônia Azul: recursos e preservação. Revista USP, 113, 7, DOI: https://doi.org/10.11606/
issn.2316-9036.v0i113p7-26
CHEN, C. T. A. & BORGES, A. V. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as
sources of atmospheric CO2
. Deep Sea Research Part
II: Topical Studies in Oceanography, 56(8-10), 578-590,
DOI: https://doi.org/10.1016/j.dsr2.2009.01.001
CHEN, C. T. A., HUANG, T. H., CHEN, Y. C., BAI, Y., HE,
X. & KANG, Y. 2013. Air-sea exchanges of CO2
in the
world’s coastal seas. Biogeosciences, 10, 6509-6544,
DOI: https://doi.org/10.5194/bg-10-6509-2013
CIOTTI, A. M., MAHIQUES, M. & MÖLLER, O. O. 2014.
The meridional gradients of the S-SE Brazilian continental shelf: introduction to the special volume. Continental
Shelf Research, 89, 1-4, DOI: https://doi.org/10.1016/j.
csr.2014.08.008
CIOTTI, A. M., ODEBRECHT, C., FILLMANN, G. & MOLLER, O. O. 1995. Freshwater outflow and Subtropical
Convergence influence on phytoplankton biomass on
the southern Brazilian continental shelf. Continental Shelf Research, 15, 1737-1756, DOI: https://doi.
org/10.1016/0278-4343(94)00091-Z
CO2
fluxes in Brazilian marine ecoregions
Ocean and Coastal Research 2023, v71(suppl 2):e23017 15
Affe et al.
COTOVICZ, L. C., CHIELLE, R. & MARINS, R. V. 2020.
Air-sea CO2
flux in an equatorial continental shelf dominated by coral reefs (Southwestern Atlantic Ocean).
Continental Shelf Research, 204, 104175, DOI: https://
doi.org/10.1016/j.csr.2020.104175
COTOVICZ, L. C., KNOPPERS, B. A., DEIRMENDJIAN,
L. & ABRIL, G. 2019. Sources and sinks of dissolved
inorganic carbon in an urban tropical coastal bay revealed by δ13C-DIC signals. Estuarine, Coastal and Shelf
Science, 220, 185-195, DOI: https://doi.org/10.1016/j.
ecss.2019.02.048
COTOVICZ, L. C., KNOPPERS, B. A., RÉGIS, C. R.,
TREMMEL, D., COSTA-SANTOS, S. & ABRIL, G. 2021.
Eutrophication overcoming carbonate precipitation in a
tropical hypersaline coastal lagoon acting as a CO2
sink
(Araruama Lagoon, SE Brazil). Biogeochemistry, 156,
, DOI: https://doi.org/10.1007/s10533-021-00842-3
COTOVICZ, L. C., VIDAL, L. O., REZENDE, C. E., BERNARDES, M. C., KNOPPERS, B. A., SOBRINHO, R.
L., CARDOSO, R. P., MUNIZ, M., ANJOS, R. M., BIEHLER, A. & ABRIL, G. 2020. Carbon dioxide sources and
sinks in the delta of the Paraíba do Sul River (Southeastern Brazil) modulated by carbonate thermodynamics,
gas exchange and ecosystem metabolism during estuarine mixing. Marine Chemistry, 226, 103869, DOI:
https://doi.org/10.1016/j.marchem.2020.103869
COYNEL, A., SEYLER, P., ETCHEBER, H., MEYBECK, M.
& ORANGE, D. 2005. Spatial and seasonal dynamics of
total suspended sediment and organic carbon species
in the Congo River: dynamics Of TSS, POC, And DOC
in the Congo River. Glob. Biogeochem. Cycles, 19, DOI:
https://doi.org/10.1029/2004GB002335
CUNHA, L. C. C. & BUITENHUIS, E. T. T. 2013. Riverine
influence on the tropical Atlantic Ocean biogeochemistry. Biogeosciences, 10, 6357-6373, DOI: https://doi.
org/10.5194/bg-10-6357-2013
FRIEDLINGSTEIN, P., JONES, M. W., O’SULLIVAN, M.,
ANDREW, R. M., HAUCK, J., PETERS, G. P., PETERS, W., PONGRATZ, J., SITCH, S., LE QUÉRÉ,
C., BAKKER, D. C. E., CANADELL, J. G., CIAIS, P.,
JACKSON, R. B., ANTHONI, P., BARBERO, L., BASTOS, A., BASTRIKOV, V., BECKER, M., BOPP, L., BUITENHUIS, E., CHANDRA, N., CHEVALLIER, F., CHINI, L. P., CURRIE, K. I., FEELY, R. A., GEHLEN, M.,
GILFILLAN, D., GKRITZALIS, T., GOLL, D. S., GRUBER, N., GUTEKUNST, S., HARRIS, I., HAVERD, V.,
HOUGHTON, R. A., HURTT, G., ILYINA, T., JAIN, A. K.,
JOETZJER, E., KAPLAN, J. O., KATO, E., GOLDEWIJK, K. K., KORSBAKKEN, J. I., LANDSCHÜTZER, P.,
LAUVSET, S. K., LEFÈVRE, N., LENTON, A., LIENERT,
S., LOMBARDOZZI, D., MARLAND, G., MCGUIRE, P.
C., MELTON, J. R., METZL, N., MUNRO, D. R., NABEL,
J. E. M. S., NAKAOKA, S. I., NEILL, C., OMAR, A. M.,
ONO, T., PEREGON, A., PIERROT, D., POULTER, B.,
REHDER, G., RESPLANDY, L., ROBERTSON, E., RÖDENBECK, C., SÉFÉRIAN, R., SCHWINGER, J., SMITH, N., TANS, P. P., TIAN, H., TILBROOK, B., TUBIELLO, F. N., VAN DER WERF, G. R., WILTSHIRE, A. J.
& ZAEHLE, S. 2019. Global Carbon Budget 2019. Earth
System Science Data, 11(4), 1783-1838, DOI: https://
doi.org/10.5194/essd-11-1783-2019
FRIEDLINGSTEIN, P., O’SULLIVAN, M., JONES, M. M.,
ANDREW, R. M., HAUCK, J., OLSEN, A., PETERS,
G. P., PETERS, W., PONGRATZ, J., SITCH, S., LE
QUÉRÉ, C., CANADELL, J. G., CIAIS, P., JACKSON,
R. B., ALIN, S., ARAGÃO, L. E. O. C., ARNETH, A.,
ARORA, V., BATES, N. R., BECKER, M., BENOIT-
-CATTIN, A., BITTIG, H. C., BOPP, L., BULTAN,
S., CHANDRA, N., CHEVALLIER, F., CHINI, L. P.,
EVANS, W., FLORENTIE, L., FORSTER, P. M., GASSER, T., GEHLEN, M., GILFILLAN, D., GKRITZALIS,
T., GREGOR, L., GRUBER, N., HARRIS, I., HARTUNG, K., HAVERD, V., HOUGHTON, R. A., ILYINA,
T., JAIN, A. K., JOETZJER, E., KADONO, K., KATO,
E., KITIDIS, V., KORSBAKKEN, J. I., LANDSCHÜTZER, P., LEFÈVRE, N., LENTON, A., LIENERT, S.,
LIU, Z., LOMBARDOZZI, D., MARLAND, G., METZL,
N., MUNRO, D. R., NABEL, J. E. M. S., NAKAOKA,
S., NIWA, Y., O’BRIEN, K., ONO, T., PALMER, P. I.,
PIERROT, D., POULTER, B., RESPLANDY, L., ROBERTSON, E., RÖDENBECK, C., SCHWINGER,
J., SÉFÉRIAN, R., SKJELVAN, I., SMITH, A. J. P.,
SUTTON, A., J., TANHUA, T., TANS, P. P., TIAN, H.,
TILBROOK, B., VAN DER WERF, G., VUICHARD,
N., WALKER, A. P., WANNINKHOF, R., WATSON, A.
J., WILLIS, D., WILTSHIRE, A. J., YUAN, W., YUE,
X. & ZAEHLE, S. 2020. Global carbon budget 2020.
Earth System Science Data, 12(4), 3269-3340, DOI:
https://doi.org/10.5194/essd-12-3269-2020
GERHARDINGER, L. C., GORRIS, P., GONÇALVES, L.
R., HERBST, D. F., VILA-NOVA, D. A., CARVALHO, F.
G., GLASER, M., ZONDERVAN, R. & GLAVOVIC, B. C.
Healing Brazil’s Blue Amazon: the role of knowledge networks in nurturing cross-scale transformations
at the frontlines of ocean sustainability. Frontiers in
Marine Science, 4, 395, DOI: https://doi.org/10.3389/
fmars.2017.00395
GLOEGE, L., YAN, M., ZHENG, T. & MCKINLEY, G. A.
Improved quantification of ocean carbon uptake
by using machine learning to merge global models
and pCO2
data. Journal of Advances in Modeling Earth Systems, 14(2), e2021MS002620, DOI: https://doi.
org/10.1029/2021MS002620
GRUBER, N., CLEMENT, D., CARTER, B. R., FEELY, R.
A., VAN HEUVEN, S., HOPPEMA, M., ISHII, M., KEY,
R. M., KOZYR, A., LAUVSET, S. K., LO MONACO, C.,
MATHIS, J. T., MURATA, A., OLSEN, A., PEREZ, F. F.,
SABINE, C. L., TANHUA, T. & WANNINKHOF, R. 2019.
The oceanic sink for anthropogenic CO2
from 1994
to 2007. Science, 363, 1193-1199, DOI: https://doi.
org/10.1126/science.aau5153
HEINZE, C., MEYER, S., GORIS, N., ANDERSON, L.,
STEINFELDT, R., CHANG, N., LE QUÉRÉ, C. &
BAKKER, D. C. E. 2015. The ocean carbon sink – impacts, vulnerabilities and challenges. Earth System
Dynamics, 6(1), 327-358, DOI: https://doi.org/10.5194/
esd-6-327-2015
IBÁNHEZ, J. S. P., ARAUJO, M. & LEFÈVRE, N. 2016.
The overlooked tropical oceanic CO2
sink: overlooked tropical oceanic CO2
sink. Geophysical Research Letters, 43(8), 3804-3812, DOI: https://doi.
org/10.1002/2016GL068020
CO2
fluxes in Brazilian marine ecoregions
Ocean and Coastal Research 2023, v71(suppl 2):e23017 16
Affe et al.
ITO, R. G., GARCIA, C. A. E. & TAVANO, V. M. 2016.
Net sea-air CO2
fluxes and modelled pCO2
in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011. Continental Shelf
Research, 119, 68-84, DOI: https://doi.org/10.1016/j.
csr.2016.03.013
ITO, R. G., SCHNEIDER, B. & THOMAS, H. 2005. Distribution of surface fCO2 and air-sea fluxes in the Southwestern subtropical Atlantic and adjacent continental shelf.
Journal of Marine Systems, 56(3-4), 227-242, DOI: https://doi.org/10.1016/j.jmarsys.2005.02.005
JANSEN, E., OVERPECK, J., BRIFFA, K. R., DUPLESSY,
J. C., JOOS, F., MASSON-DELMOTTE, V., OLAGO, D.,
OTTO-BLIESNER, B., PELTIER, W. R. & RAHMSTORF,
S. 2007. Climate Change 2007: The Physical Science
Basis. Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge: IPCC (Intergovernmental
Panel on Climate Chance).
JIANG, L. Q., CAI, W. J., WANNINKHOF, R., WANG, Y. &
LÜGER, H. 2008. Air-sea CO2 fluxes on the U.S. South
Atlantic Bight: spatial and seasonal variability. Journal of
Geophysical Research Oceans, 113(C7), C07019, DOI:
https://doi.org/10.1029/2007JC004366
KALNAY, E., KANAMITSU, M., KISTLER, R., COLLINS,
W., DEAVEN, D., GANDIN, L., IREDELL, M., SAHA, S.,
WHITE, G. & WOOLLEN, J. 1996. The NCEP/NCAR
-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437-472.
KHATIWALA, S., TANHUA, T., FLETCHER, S. M., GERBER, M., DONEY, S. C., GRAVEN, H. D., GRUBER, N.,
MCKINLEY, G. A., MURATA, A., RÍOS, A. F. & SABINE,
C. L. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences, 10, 2169-2191, DOI: https://doi.
org/10.5194/bg-10-2169-2013
KÖRTZINGER, A., QUAY, P. D. & SONNERUP, R. E.
Relationship between anthropogenic CO2
and
the 13C Suess effect in the North Atlantic Ocean: ANTHROPOGENIC CO2
AND 13C SUESS EFFECT. Global Biogeochemical Cycles, 17(1), 20, DOI: https://doi.
org/10.1029/2001GB001427
LABAT, D., RONCHAIL, J., CALLEDE, J., GUYOT, J. L.,
OLIVEIRA, E. & GUIMARÃES, W. 2004. Wavelet analysis of Amazon hydrological regime variability: wavelet
analysis of amazon. Geophysical Research Letters, 31,
DOI: https://doi.org/10.1029/2003GL018741
LANDSCHÜTZER, P., GRUBER, N. & BAKKER, D. C. E.
Decadal variations and trends of the global ocean
carbon sink: decadal air-sea CO2
flux variability. Global
Biogeochemical Cycles, 30(10), 1396-1417, DOI: https://doi.org/10.1002/2015GB005359
LANDSCHÜTZER, P., GRUBER, N., BAKKER, D.
C. E. & SCHUSTER, U. 2014. Recent variability of the global ocean carbon sink. Global Biogeochemical Cycles, 28(9), 927-949, https://doi.
org/10.1002/2014GB004853
LARUELLE, G. G., CAI, W. J., HU, X., GRUBER, N., MACKENZIE, F. T. & REGNIER, P. 2018. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nature Communications, 9, 454,
DOI: https://doi.org/10.1038/s41467-017-02738-z
LE QUÉRÉ, C., ANDRES, R. J., BODEN, T., CONWAY,
T., HOUGHTON, R. A., HOUSE, J. I., MARLAND, G.,
PETERS, G. P., VAN DER WERF, G. R., AHLSTRÖM,
A., ANDREW, R. M., BOPP, L., CANADELL, J. G.,
CIAIS, P., DONEY, S. C., ENRIGHT, C., FRIEDLINGSTEIN, P., HUNTINGFORD, C., JAIN, A. K., JOURDAIN, C., KATO, E., KEELING, R. F., GOLDEWIJK,
K. K., LEVIS, S., LEVY, P., LOMAS, M., POULTER,
B., RAUPACH, M. R., SCHWINGER, J., SITCH, S.,
STOCKER, B. D., VIOVY, N., ZAEHLE, S. & ZENG,
N. 2013. The global carbon budget 1959-2011. Earth
System Science Data, 5, 165-185, DOI: https://doi.
org/10.5194/essd-5-165-2013
LE QUÉRÉ, C., ANDREW, R. M., FRIEDLINGSTEIN, P.,
SITCH, S., HAUCK, J., PONGRATZ, J., PICKERS, P.
A., KORSBAKKEN, J. I., PETERS, G. P., CANADELL, J. G., ARNETH, A., ARORA, V. K., BARBERO, L.,
BASTOS, A., BOPP, L., CHEVALLIER, F., CHINI, L. P.,
CIAIS, P., DONEY, S. C., GKRITZALIS, T., GOLL, D. S.,
HARRIS, I., HAVERD, V., HOFFMAN, F. M., HOPPEMA, M., HOUGHTON, R. A., HURTT, G., ILYINA, T.,
JAIN, A. K., JOHANNESSEN, T., JONES, C. D., KATO,
E., KEELING, R. F., GOLDEWIJK, K. K., LANDSCHÜTZER, P., LEFÈVRE, N., LIENERT, S., LIU, Z., LOMBARDOZZI, D., METZL, N., MUNRO, D. R., NABEL, J. E.
M. S., NAKAOKA, S., NEILL, C., OLSEN, A., ONO, T.,
PATRA, P., PEREGON, A., PETERS, W., PEYLIN, P.,
PFEIL, B., PIERROT, D., POULTER, B., REHDER, G.,
RESPLANDY, L., ROBERTSON, E., ROCHER, M., RÖDENBECK, C., SCHUSTER, U., SCHWINGER, J., SÉFÉRIAN, R., SKJELVAN, I., STEINHOFF, T., SUTTON,
A., TANS, P. P., TIAN, H., TILBROOK, B., TUBIELLO,
F. N., VAN DER LAAN-LUIJKX, I. T., VAN DER WERF,
G. R., VIOVY, N., WALKER, A. P., WILTSHIRE, A. J.,
WRIGHT, R., ZAEHLE, S. & ZHENG, B. 2018. Global
carbon budget 2018. Earth System Science Data, 10,
-2194, DOI: https://doi.org/10.5194/essd-10-2141-
LEÃO, Z., KIKUCHI, R., OLIVEIRA, M. D. & VASCONCELLOS, V. 2010. Status of Eastern Brazilian coral reefs in
time of climate changes. Pan-American Journal Aquatic
Sciences, 5(2), 224-35.
LEFÈVRE, N., DIVERRÉS, D. & GALLOIS, F. 2010. Origin of CO 2 undersaturation in the western tropical
Atlantic. Tellus B: Chemical and Physical Meteorology,
(5), 595-607, DOI: https://doi.org/10.1111/j.1600-
2010.00475.x
LEFÈVRE, N., MONTES, M. F., GASPAR, F. L., ROCHA,
C., JIANG, S., ARAÚJO, M. C. & IBÁNHEZ, J. S. P.
Net heterotrophy in the amazon continental shelf
changes rapidly to a sink of CO2
in the outer amazon
plume. Frontiers in Marine Science, 4, 278, DOI: https://
doi.org/10.3389/fmars.2017.00278
LIBES, S. 2011. Susan. Introduction to marine biogeochemistry. San Diego: Academic Press.
LONGHURST, A. R. 1998. Ecological geography of the sea.
San Diego: Academic Press.
LUDWIG, W., SUCHET, P. A. & PROBST, J. L. 1996. River
discharges of carbon to the world’s oceans: determining
local inputs of alkalinity and of dissolved and particulate organic carbon. Science de la Terre Planètes, 323,
-1014.
CO2
fluxes in Brazilian marine ecoregions
Ocean and Coastal Research 2023, v71(suppl 2):e23017 17
Affe et al.
MAROTTA, H., PEIXOTO, R. B., PERUZZI, V., COSTA,
R., ASSIS, C. A. M., COTRIM, L. C., MOSER, G. A.
O., POLLERY, R. C. G. & PINHO, L. 2020. Biomonitoramento contínuo de águas do peld-baía de guanabara: intensa variação nictemeral de gases metabólicos na condição eutrófica tropical. Oecologia
Australis, 24, 365-388, DOI: https://doi.org/10.4257/
oeco.2020.2402.10
MEADE, R. H., DUNNE, T., RICHEY, J. E., SANTOS, U.
M. & SALATI, E. 1985. Storage and Remobilization of
Suspended Sediment in the Lower Amazon River of
Brazil. Science, 228(4698), 488-490, DOI: https://doi.
org/10.1126/science.228.4698.488
MEARS, C. A., SCOTT, J., WENTZ, F. J., RICCIARDULLI, L., LEIDNER, S. M., HOFFMAN, R. & ATLAS,
R. 2019. A Near Real Time Version of the Cross
Calibrated Multiplatform (CCMP) ocean surface
wind velocity data set. Journal of Geophysical Research: Oceans, 124, 6997-7010, DOI: https://doi.
org/10.1029/2019JC015367
MEYBECK, M. & RAGU, A. 2012. GEMS-GLORI world river
discharge database. Paris: PANGAEA, DOI: https://doi.
org/10.1594/PANGAEA.804574
MÖLLER, O. O., PIOLA, A. R., FREITAS, A. C. & CAMPOS, E. J. D. 2008. The effects of river discharge and seasonal winds on the shelf off southeastern South America. Continental Shelf Research,
(13), 1607-1624, DOI: https://doi.org/10.1016/j.
csr.2008.03.012
MONTEIRO, T., KERR, R., ORSELLI, I. B. M. & LENCINA-
-AVILA, J. M. 2020. Towards an intensified summer CO2
sink behaviour in the Southern Ocean coastal regions.
Progress in Oceanography, 183, 102267, DOI: https://
doi.org/10.1016/j.pocean.2020.102267
MOSER, G. A. O., TAKANOHASHI, R. A., BRAZ, M., DE
LIMA, D. T., KIRSTEN, F. V., GUERRA, J. V., FERNANDES, A. M. & POLLERY, R. C. G. 2014. Phytoplankton
spatial distribution on the Continental Shelf off Rio
de Janeiro, from Paraíba do Sul River to Cabo Frio.
Hydrobiologia, 728, 1-21, DOI: https://doi.org/10.1007/
s10750-013-1791-3
MU, L., GOMES, H. R., BURNS, S. M., GOES, J. I., COLES, V. J., REZENDE, C. E., THOMPSON, F. L., MOURA, R. L., PAGE, B. & YAGER, P. L. 2021. Temporal
Variability of Air‐Sea CO2
flux in the Western Tropical
North Atlantic Influenced by the Amazon River Plume.
Global Biogeochemical Cycles, 35(6), 1-8, https://doi.
org/10.1029/2020GB006798
OLIVEIRA, R. R., AFFE, H. M. J., AVELINA, R., PINHO,
L. Q., FRANKLIN, T. V., MIGUEL, G. & CUNHA, L. C.
Fonte ou sumidouro? Uma revisão sobre os fluxos
de CO2 na Plataforma Continental Brasileira. Química
Nova, 1-12, DOI: http://dx.doi.org/10.21577/0100-
20170970
OLIVEIRA, R. R., PEZZI, L. P., SOUZA, R. B., SANTINI, M. F., CUNHA, L. C. & PACHECO, F. S. 2019.
First measurements of the ocean-atmosphere CO2
fluxes at the Cabo Frio upwelling system region,
Southwestern Atlantic Ocean. Continental Shelf Research, 181, 135-142, DOI: https://doi.org/10.1016/j.
csr.2019.05.008
PADIN, X. A., VÁZQUEZ-RODRÍGUEZ, M., CASTAÑO,
M., VELO, A., ALONSO-PÉREZ, F., GAGO, J., GILCOTO, M., ÁLVAREZ, M., PARDO, P. C., DE LA PAZ, M.,
RÍOS, A. F. & PÉREZ, F. F. 2010. Air-Sea CO2 fluxes in
the Atlantic as measured during boreal spring and autumn. Biogeosciences, 7, 1587-1606, DOI: https://doi.
org/10.5194/bg-7-1587-2010
PEREIRA, A. F., BELÉM, A. L., CASTRO, B. M. & GEREMIAS, R. 2005. Tide-topography interaction along the
eastern Brazilian shelf. Continental Shelf Research,
(12-13), 1521-1539, DOI: https://doi.org/10.1016/j.
csr.2005.04.008
PEREIRA, F. B., NOGUEIRA, M., SIMIÃO, M., CODINA,
J. C. U. & NOERNBERG, M. A. 2014. Deep chlorophyll
maximum and plankton community response to oceanic
bottom intrusions on the continental shelf in the South
Brazilian Bight. Continental Shelf Research, 89, 61-75,
DOI: https://doi.org/10.1016/j.csr.2013.08.002
PEZZI, L. P., SOUZA, R. B., ACEVEDO, O., WAINER,
I., MATA, M. M., GARCIA, C. A. & CAMARGO, R.
Multiyear measurements of the oceanic and
atmospheric boundary layers at the Brazil‐Malvinas confluence region. Journal of Geophysical Research: Atmospheres, 114(D19), DOI: https://doi.
org/10.1029/2008JD011379
PIOLA, A. R., CAMPOS, E. J. D., MÖLLER, O. O., CHARO, M. & MARTINEZ, C. 2000. Subtropical Shelf Front
off eastern South America. Journal of Geophysical Research Oceans, 105(D19), 6565-6578, DOI: https://doi.
org/10.1029/1999JC000300
PIOLA, A. R., MÖLLER, O. O., GUERRERO, R. A. & CAMPOS, E. J. D. 2008. Variability of the subtropical shelf
front off eastern South America: winter 2003 and summer 2004. Continetal Shelf Research, 28(13), 1639-
, DOI: https://doi.org/10.1016/j.csr.2008.03.013
PROBST, J. L., MORTATTI, J. & TARDY, Y. 1994. Carbon
river fluxes and weathering CO2 consumption in the
Congo and Amazon river basins. Applied Geochemistry, 9(1), 1-13, DOI: https://doi.org/10.1016/0883-
(94)90047-7
R CORE TEAM, 2022. R: A Language and Environment for
Statistical Computing. Vienna: R Foundation for Statistical Computing.
ROCHA, C. B., SILVEIRA, I. C. A., CASTRO, B. M. & LIMA,
J. A. M. 2014. Vertical structure, energetics, and dynamics of the Brazil Current System at 22°S-28°S: on
the Brazil current at 22°S-28°S. Journal of Geophysical Research Oceans, 119(1), 52-69, DOI: https://doi.
org/10.1002/2013JC009143
RÖDENBECK, C., KEELING, R. F., BAKKER, D. C. E.,
METZL, N., OLSEN, A., SABINE, C. & HEIMANN, M.
Global surface-ocean pCO2
and sea–air CO2
flux
variability from an observation-driven ocean mixed-layer
scheme. Ocean Science, 9(2), 193-216, DOI: https://
doi.org/10.5194/os-9-193-2013
ROOBAERT, A., LARUELLE, G. G., LANDSCHÜTZER,
P., GRUBER, N., CHOU, L. & REGNIER, P. 2019. The
spatiotemporal dynamics of the sources and sinks of
CO2
in the global coastal ocean. Global Biogeochemical Cycles, 33(12), 1693-1714, DOI: https://doi.
org/10.1029/2019GB006239
CO2
fluxes in Brazilian marine ecoregions
Ocean and Coastal Research 2023, v71(suppl 2):e23017 18
Affe et al.
ROY-BARMAN, M. & JEANDEL, C. 2016. Marine geochemistry: ocean circulation, carbon cycle and climate
change. Oxford: Oxford University Press.
SABINE, C., DUCKLOW, H. & HOOD, M. 2010. International Carbon Coordination: Roger Revelle’s Legacy
in the Intergovernmental Oceanographic Commission.
Oceanography, 23, 48-61, DOI: https://doi.org/10.5670/
oceanog.2010.23
SILVA, A. C., ARAÚJO, M. & BOURLÈS, B. 2010. Seasonal variability of the Amazon river plume during Revizee program. Tropical Oceanography, 38(1), 76, DOI:
https://doi.org/10.5914/tropocean.v38i1.5162
SILVEIRA, I. C. A., FLIERL, G. R. & BROWN, W. S. 2000.
Dynamics of separating Western Boundary Currents.
Journal of Physical Oceanography, 29(2), 129-144, DOI:
https://doi.org/10.1175/1520-0485(1999)029<0119:DO
SWBC>2.0.CO;2
SOCAT (Surface Ocean CO2 Atlas). 2020. Welcome to
SOCAT. Bergen: SOCAT. Available at: http://www.socat.
info. [Accessed: 2020 Out 19].
SOUZA, R. B. & ROBINSON, I. S. 2004. Lagrangian and
satellite observations of the Brazilian Coastal Current.
Continental Shelf Research, 24, 241-262, DOI: https://
doi.org/10.1016/j.csr.2003.10.001
SPALDING, M. D., FOX, H. E., ALLEN, G. R., DAVIDSON,
N., FERDAÑA, Z. A., FINLAYSON, M., HALPERN, B.
S., JORGE, M. A., LOMBANA, A., LOURIE, S. A., MARTIN, K. D., MCMANUS, E., MOLNAR, J., RECCHIA,
C. A. & ROBERTSON, J. 2007. Marine ecoregions
of the world: a bioregionalization of coastal and shelf
areas. BioScience, 57(7), 573-583, DOI: https://doi.
org/10.1641/B570707
STRAMMA, L. & SCHOTT, F. 1999. The mean flow field
of the tropical Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 46(1-
, 279-303, DOI: https://doi.org/10.1016/S0967-
-0645(98)00109-X
TAKAHASHI, T., SUTHERLAND, S. C. & KOZYR, A.
Global ocean surface water partial pressure of
CO2
database: measurements performed during 1957-
(version 2018) - NOAA/NCEI/OCADS NDP-088
(V2018). Silver Spring: NOAA (National Oceanic and
Atmospheric Administration).
TANS, P. & KEELING, R. 2020. Trends in atmospheric carbon
dioxide. Washington, DC: NOAA (National Oceanic and Atmospheric Administration) - Global Monitoring Laboratory.
VALERIO, M. A., KAMPEL, M., WARD, M. D., SAWAKUCHI,
H. O., CUNHA, A. C. & RICHEY, J. E. 2021. CO2
partial
pressure and fluxes in the Amazon River plume using in situ
and remote sensing data. Continental Shelf Research, 215,
, DOI: https://doi.org/10.1016/j.csr.2021.104348
WANG, H., HU, X., CAI, W. J. & STERBA-BOATWRIGHT,
B. 2017. Decadal f CO2
trends in global ocean margins and adjacent boundary current-influenced areas:
decadal f CO2
trends in ocean margins. Geophysical
Research Letters, 44(17), 8962-8970, DOI: https://doi.
org/10.1002/2017GL074724
WANNINKHOF, R. 2014. Relationship between wind speed
and gas exchange over the ocean revisited. Limnology
and Oceanography Methods, 12(6), 351-362, DOI: https://doi.org/10.4319/lom.2014.12.351
WEISS, R. F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3), 203-215, DOI: https://doi.org/10.1016/0304-
(74)90015-2
WEISS, R. F. & PRICE, B. A. 1980. Nitrous oxide solubility
in water and seawater. Marine Chemistry, 8(4), 347-359,
DOI: https://doi.org/10.1016/0304-4203(80)90024-9
WENTZ, F. J., SCOTT, J., HOFFMAN, R., LEIDNER, M.,
ATLAS, R. & ARDIZZONE, J. 2015. Remote Sensing
Systems Cross-Calibrated Multi-Platform (CCMP)
-hourly ocean vector wind analysis product on 0.25 deg
grid, Version 2.0. Santa Rosa: Remote Sensing Systems. Available at: at: www.remss.com/measurements/
ccmp. [Accessed: 26 August 2022].
Downloads
Published
Issue
Section
License
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.