Evidence of magnetite reduction and primary magnetization destruction during early diagenesis in sediments from Maldives Inner Sea

Authors

  • Igor Gustavo da Fonseca Carrasqueira
  • Luca Lanci
  • Luigi Jovane

DOI:

https://doi.org/10.1590/

Keywords:

IODP exp. 359, Indian Ocean, Magnetostratigraphy, Carbonate platform, Siderite

Abstract

Magnetic experiments have provided insight into the preservation of magnetite in sediments of the Inner Sea of the Maldives during early diagenesis. In this study, we present high-resolution remanence data on the upper 15 meters of the sedimentary record and a detailed magnetic characterization of discrete samples from the top 5.5 meters of the International Ocean Discovery Program (IODP) Site U1471 record. Based on magnetic experiments, it can be concluded that magnetite is rapidly reduced, with a large decrease in natural remanent magnetization (NRM) related to destruction of primary NRM below the upper two meters of the sedimentary record. In thermomagnetic experiments, the appearance of a greigite signal at 3.06 meters below sea floor (mbsf) suggests that current diagenesis could imprint nearly 100 kry of error on the chronology based on magnetostratigraphy. Furthermore, based on X-ray fluorescence data, it can be concluded that magnetite reduction did not affect the Fe record.

References

Abdulkarim, M. A., Muxworthy, A. R., Fraser, A., Neumaier, M., Hu, P. & Cowan, A. 2022. Siderite occurrence in petroleum systems and its potential as a hydrocarbon-migration proxy: A case study of the Catcher Area Development and the Bittern area, UK North Sea. Journal of Petroleum Science and Engineering, 212, 110248. DOI: https://doi.org/10.1016/j.petrol.2022.110248

» https://doi.org/10.1016/j.petrol.2022.110248

Berner, R. A. 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48, 605-615. DOI: https://doi.org/10.1016/0016-7037(84)90089-9

» https://doi.org/10.1016/0016-7037(84)90089-9

Betzler, C., Eberli, G. P., Alvarez Zarikian, C. A., Alonso-García, M., Bialik, O. M., Blättler, C. L., Guo, J. A., Haffen, S., Horozal, S., Inoue, M., Jovane, L., Kroon, D., Lanci, L., Laya, J. C., Ling Hui Mee, A., Lüdmann, T., Nakakuni, M., Nath, B. N., Niino, K., Petruny, L. M., Pratiwi, S. D., Reijmer, J. J. G., Reolid, J., Slagle, A. L., Sloss, C. R., Su, X., Swart, P. K., Wright, J. D., Yao, Z. & Young, J. R. 2017a. Site U1471. In: Betzler, C., Eberli, G. P., Alvarez Zarikian, C. A. & The Expedition 359 Scientists. Maldives Monsoon and Sea Level. Proceedings of the International Ocean Discovery Program. College Station, TX (International Ocean Discovery Program). DOI: DOI: http://dx.doi.org/10.14379/iodp.proc.359.109.2017

» http://dx.doi.org/10.14379/iodp.proc.359.109.2017

Betzler, C., Eberli, G. P., Alvarez Zarikian, C. A., Alonso-García, M., Bialik, O. M., Blättler, C. L., Guo, J. A., Haffen, S., Horozal, S., Inoue, M., Jovane, L., Kroon, D., Lanci, L., Laya, J. C., Ling Hui Mee, A., Lüdmann, T., Nakakuni, M., Nath, B. N., Niino, K., Petruny, L. M., Pratiwi, S. D., Reijmer, J. J. G., Reolid, J., Slagle, A. L., Sloss, C. R., Su, X., Swart, P. K., Wright, J. D., Yao, Z. & Young, J. R. 2017b. Site U1468. In Betzler, C., Eberli, G.P., Alvarez Zarikian, C.A. & The Expedition 359 Scientists. Maldives Monsoon and Sea Level. Proceedings of the International Ocean Discovery Program . College Station, TX (International Ocean Discovery Program). DOI: http://dx.doi.org/10.14379/iodp.proc.359.106.2017

» http://dx.doi.org/10.14379/iodp.proc.359.106.2017

Betzler, C., Eberli, G. P., Lüdmann, T., Reolid, J., Kroon, D., Reijmer, J. J. G., Swart, P. K., Wright, J., Young, J. R., Alvarez-Zarikian, C., Alonso-García, M., Bialik, O. M., Blättler, C. L., Guo, J. A., Haffen, S., Horozal, S., Inoue, M., Jovane, L., Lanci, L., Laya, J. C., Hui Mee, A. L., Nakakuni, M., Nath, B.N., Niino, K., Petruny, L. M., Pratiwi, S. D., Slagle, A. L., Sloss, C. R., Su, X. & Yao, Z. 2018. Refinement of Miocene sea level and monsoon events from the sedimentary archive of the Maldives (Indian Ocean). Progress in Earth and Planetary Science, 5, 5. DOI: https://doi.org/10.1186/s40645-018-0165-x

» https://doi.org/10.1186/s40645-018-0165-x

Betzler, C., Eberli, G., Kroon, D., Wright, J., Swart, P., Bejugam, N., Zarikian, C., Alonso Garcia, M., Bialik, O., Blättler, C., Guo, J., Haffen, S., Horozal, S., Inoue, M., Jovane, L., Lanci, L., Laya, J.C., Ling, A., Lüdmann, T. & Young, J. 2016. The abrupt onset of the modern South Asian Monsoon winds. Scientific Reports, 6. DOI: https://doi.org/10.1038/srep29838

» https://doi.org/10.1038/srep29838

Betzler, C., Fürstenau, J., Lüdmann, T., Hübscher, C., Lindhorst, S., Paul, A., Reijmer, J. J. G. & Droxler, A. W. 2013a. Sea-level and ocean-current control on carbonate-platform growth, Maldives, Indian Ocean. Basin Research, 25, 172-196. DOI: https://doi.org/10.1111/j.1365-2117.2012.00554.x

» https://doi.org/10.1111/j.1365-2117.2012.00554.x

Betzler, C., Hübscher, C., Lindhorst, S., Reijmer, J. J. G., Römer, M., Droxler, A. W., Fürstenau, J. & Lüdmann, T. 2009. Monsoon-induced partial carbonate platform drowning (Maldives, Indian Ocean). Geology, 37(10), 867-870. DOI: https://doi.org/10.1130/G25702A.1

» https://doi.org/10.1130/G25702A.1

Betzler, C., Lüdmann, T., Hübscher, C. & Fürstenau, J. 2013b. Current and sea-level signals in periplatform ooze (Neogene, Maldives, Indian Ocean). Sedimentary Geology , 290, 126-137. DOI: https://doi.org/10.1016/j.sedgeo.2013.03.011

» https://doi.org/10.1016/j.sedgeo.2013.03.011

Bunzel, D., Schmiedl, G., Lindhorst, S., Mackensen, A., Reolid, J., Romahn, S. & Betzler, C. 2017. A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea. Climate of the Past, 13, 1791-1813. DOI: https://doi.org/10.5194/cp-13-1791-2017

» https://doi.org/10.5194/cp-13-1791-2017

Carrasqueira, I. G. F., Jovane, L., Droxler, A. W., Alvarez Zarikian, C. A., Lanci, L., Alonso-Garcia, M., Laya, J. C. & Kroon, D. 2023. Anomalous widespread arid events in Asia over the past 550,000 years. PNAS Nexus, 2(6). DOI: https://doi.org/10.1093/pnasnexus/pgad175

» https://doi.org/10.1093/pnasnexus/pgad175

Dantas, R. C., Hassan, M. B., Cruz, F. W. & Jovane, L. 2022. Evidence for methane seepage in South Atlantic from the occurrence of authigenic gypsum and framboidal pyrite in deep-sea sediments. Marine and Petroleum Geology , 142, 105727. DOI: https://doi.org/10.1016/j.marpetgeo.2022.105727

» https://doi.org/10.1016/j.marpetgeo.2022.105727

Day, R., Fuller, M. & Schmidt, V. A. 1977. Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13, 260-267. DOI: https://doi.org/10.1016/0031-9201(77)90108-X

» https://doi.org/10.1016/0031-9201(77)90108-X

Dekkers, M. J., Passier, H. F. & Schoonen, M. A. A. 2000. Magnetic properties of hydrothermally synthesized greigite (Fe3S4)-II. High- and low-temperature characteristics. Geophysical Journal International, 141, 809-819. DOI: https://doi.org/10.1046/j.1365-246x.2000.00129.x

» https://doi.org/10.1046/j.1365-246x.2000.00129.x

Droxler, A. W., Haddad, D. A., Mucciarone, J. L. & Cullen, J. L. 1990. Pliocene-Pleistocene Aragonite Cyclic Variations in Holes 714A and 716B (the Maldives) Compared with Hole 633A (the Bahamas): Records of Climate-Induced CaCO3 Preservation at Intermediate Water Depths. Proceedings of the Ocean Drilling Program, Scientific Result, 115. DOI: https://doi.org/10.2973/odp.proc.sr.115.179.1990

» https://doi.org/10.2973/odp.proc.sr.115.179.1990

Emirog̃lu, S., Rey, D. & Petersen, N. 2004. Magnetic properties of sediment in the Ría de Arousa (Spain): dissolution of iron oxides and formation of iron sulphides. Physics and Chemistry of the Earth, Parts A/B/C, 29, 947-959. DOI: https://doi.org/10.1016/j.pce.2004.03.012

» https://doi.org/10.1016/j.pce.2004.03.012

Florindo, F. & Sagnotti, L. 1995. Palaeomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section. Geophysical Journal International , 123(2), 340-354. DOI: https://doi.org/10.1111/j.1365-246X.1995.tb06858.x

» https://doi.org/10.1111/j.1365-246X.1995.tb06858.x

Garming, J. F. L., Bleil, U. & Riedinger, N. 2005. Alteration of magnetic mineralogy at the sulfate-methane transition: Analysis of sediments from the Argentine continental slope. Physics of the Earth and Planetary Interiors , 151, 290-308. DOI: https://doi.org/10.1016/j.pepi.2005.04.001

» https://doi.org/10.1016/j.pepi.2005.04.001

Housen, B. A., Banerjee, S. K. & Moskowitz, B. M. 1996. Low-temperature magnetic properties of siderite and magnetite in marine sediments. Geophysical Research Letters, 23, 2843-2846. DOI: https://doi.org/10.1029/96GL01197

» https://doi.org/10.1029/96GL01197

Jiang, W.-T., Horng, C.-S., Roberts, A. P. & Peacor, D. R. 2001. Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth and Planetary Science Letters, 193(1-2), 1-12. DOI: https://doi.org/10.1016/S0012-821X(01)00497-6

» https://doi.org/10.1016/S0012-821X(01)00497-6

Kao, S.-J., Horng, C.-S., Roberts, A. P. & Liu, K.-K. 2004. Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chemical Geology , 203(1-2), 153-168. DOI: https://doi.org/10.1016/j.chemgeo.2003.09.007

» https://doi.org/10.1016/j.chemgeo.2003.09.007

Kawamura, N., Oda, H., Ikehara, K., Yamazaki, T., Shioi, K., Taga, S., Hatakeyama, S. & Torii, M. 2007. Diagenetic effect on magnetic properties of marine core sediments from the southern Okhotsk Sea. Earth, Planets and Space, 59, 83-93. DOI: https://doi.org/10.1186/BF03352680

» https://doi.org/10.1186/BF03352680

Kido, Y., Koshikawa, T. & Tada, R. 2006. Rapid and quantitative major element analysis method for wet fine-grained sediments using an XRF microscanner. Marine Geology , 229, 209-225. DOI: https://doi.org/10.1016/j.margeo.2006.03.002

» https://doi.org/10.1016/j.margeo.2006.03.002

Kramer, P., Swart, P., De Carlo, E. H. & Schovsbo, N. H. 2000. Overview of interstitial fluid and sediment geochemistry, Sites 1003-1007 (Bahamas Transect). Proceedings of the Ocean Drilling Program, Scientific Results, 166, 1003-1007. DOI: https://doi.org/10.2973/odp.proc.sr.166.117.2000

» https://doi.org/10.2973/odp.proc.sr.166.117.2000

Krs, M., Novák, F., Krsová, M., Pruner, P., Kouklíková, L. & Jansa, J. 1992. Magnetic properties and metastability of greigite-smythite mineralization in brown-coal basins of the Krušné hory Piedmont, Bohemia. Physics of the Earth and Planetary Interiors , 70, 273-287. DOI: https://doi.org/10.1016/0031-9201(92)90194-Z

» https://doi.org/10.1016/0031-9201(92)90194-Z

Kunkelova, T., Jung, S.J.A., De Leau, E. S., Odling, N., Thomas, A. L., Betzler, C., Eberli, G.P., Alvarez-Zarikian, C. A., Alonso-García, M., Bialik, O. M., Blättler, C. L., Guo, J. A., Haffen, S., Horozal, S., Mee, A. L. H., Inoue, M., Jovane, L., Lanci, L., Laya, J. C., Lüdmann, T., Bejugam, N. N., Nakakuni, M., Niino, K., Petruny, L. M., Pratiwi, S. D., Reijmer, J. J. G., Reolid, J., Slagle, A. L., Sloss, C. R., Su, X., Swart, P. K., Wright, J. D., Yao, Z., Young, J. R., Lindhorst, S., Stainbank, S., Rueggeberg, A., Spezzaferri, S., Carrasqueira, I., Yu, S. & Kroon, D. 2018. A two million year record of low-latitude aridity linked to continental weathering from the Maldives. Progress in Earth and Planetary Science , 5, 86. DOI: https://doi.org/10.1186/s40645-018-0238-x

» https://doi.org/10.1186/s40645-018-0238-x

Lanci, L., Zanella, E., Jovane, L., Galeotti, S., Alonso-García, M., Alvarez-Zarikian, C. A., Bejugam, N. N., Betzler, C., Bialik, O. M., Blättler, C. L., Eberli, G. P., Guo, J. A., Haffen, S., Horozal, S., Inoue, M., Kroon, D., Laya, J. C., Mee, A. L. H., Lüdmann, T., Nakakuni, M., Niino, K., Petruny, L. M., Pratiwi, S. D., Reijmer, J. J. G., Reolid, J., Slagle, A. L., Sloss, C. R., Su, X., Swart, P. K., Wright, J. D., Yao, Z. & Young, J. R. 2019. Magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform) reveal changes in the monsoon system. Palaeogeography, Palaeoclimatology, Palaeoecology, 533, 109283. DOI: https://doi.org/10.1016/j.palaeo.2019.109283

» https://doi.org/10.1016/j.palaeo.2019.109283

Lindhorst, S., Betzler, C. & Kroon, D. 2019. Wind variability over the northern Indian Ocean during the past 4 million years - insights from coarse aeolian dust (IODP Exp. 359, Site U1467, Maldives). Palaeogeography, Palaeoclimatology, Palaeoecology , 536, 109371. DOI: https://doi.org/10.1016/j.palaeo.2019.109371

» https://doi.org/10.1016/j.palaeo.2019.109371

Liu, J., Zhu, R., Roberts, A. P., Li, S. & Chang, J.-H. 2004. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait. Journal of Geophysical Research Solid Earth, 109. DOI: https://doi.org/10.1029/2003JB002813

» https://doi.org/10.1029/2003JB002813

Malone, M., Baker, P.A., Burns, S. & Swart, P. 1990. 35. Geochemistry of Periplatform Carbonate Sediments, Leg 115, Site 716 (Maldives Archipelago, Indian Ocean). Proceedings of the Ocean Drilling Program, Scientific Result , 115.

Mayergoyz, I. 1986. Mathematical Models of Hysteresis. IEEE Transactions on Magnetics, 22(5), 603-608. https://doi.org/10.1109/TMAG.1986.1064347

» https://doi.org/10.1109/TMAG.1986.1064347

Minyuk, P. S., Subbotnikova, T. V. & Plyashkevich, A. A. 2011. Measurements of thermal magnetic susceptibility of hematite and goethite. Izvestiya, Physics of the Solid Earth, 47, 762-774. DOI: https://doi.org/10.1134/S1069351311080052

» https://doi.org/10.1134/S1069351311080052

Moore, E. W. & Swart, P. K. 2022. Evidence for recrystallization and fluid advection in the Maldives using the sulfur isotopic composition of porewaters, carbonates, and celestine. Chemical Geology , 609, 121062. DOI: https://doi.org/10.1016/j.chemgeo.2022.121062

» https://doi.org/10.1016/j.chemgeo.2022.121062

Muxworthy, A. R., Turney, J. N., Qi, L., Baker, E. B., Perkins, J. R. & Abdulkarim, M. A. 2023. Interpreting high-temperature magnetic susceptibility data of natural systems. Frontiers in Earth Science, 11. DOI: https://doi.org/10.3389/feart.2023.1171200

» https://doi.org/10.3389/feart.2023.1171200

Ogg, J. G. 2020. Chapter 5 - Geomagnetic Polarity Time Scale. In: Gradstein, F.M., Ogg, James G., Schmitz, M.D. & Ogg, G.M. (Eds.). Geologic Time Scale 2020 (pp. 159-192). Amsterdam: Elsevier. DOI: https://doi.org/10.1016/B978-0-12-824360-2.00005-X

» https://doi.org/10.1016/B978-0-12-824360-2.00005-X

Paul, A., Reijmer, J., Lampart, J., Kinkel, H. & Betzler, C. 2012. Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonite production (Maldives, Indian Ocean). Sedimentology, 59, 1640-1658. DOI: https://doi.org/10.1111/j.1365-3091.2011.01319.x

» https://doi.org/10.1111/j.1365-3091.2011.01319.x

Poulton, S. W., Krom, M. D. & Raiswell, R. 2004. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochimica et Cosmochimica Acta , 68, 3703-3715. DOI: https://doi.org/10.1016/j.gca.2004.03.012

» https://doi.org/10.1016/j.gca.2004.03.012

Purdy, E. G. & Bertram, G. T. 1993. Carbonate Concepts from the Maldives, Indian Ocean. AAPG Studies in Geology , 47, 7-55.

Reid, J. L., 2003. On the total geostrophic circulation of the Indian Ocean: flow patterns, tracers, and transports. Progress in Oceanography, 56, 137-186. DOI: https://doi.org/10.1016/S0079-6611(02)00141-6

» https://doi.org/10.1016/S0079-6611(02)00141-6

Rey, D., Mohamed, K. J., Bernabeu, A., Rubio, B. & Vilas, F. 2005. Early diagenesis of magnetic minerals in marine transitional environments: geochemical signatures of hydrodynamic forcing. Marine Geology , 215, 215-236. DOI: https://doi.org/10.1016/j.margeo.2004.12.001

» https://doi.org/10.1016/j.margeo.2004.12.001

Roberts, A. P. 2015. Magnetic mineral diagenesis. Earth-Science Reviews, 151, 1-47. DOI: https://doi.org/10.1016/j.earscirev.2015.09.010

» https://doi.org/10.1016/j.earscirev.2015.09.010

Roberts, A. P., Chang, L., Rowan, C. J., Horng, C.-S. & Florindo, F. 2011. Magnetic properties of sedimentary greigite (Fe 3 S 4): An update. Reviews of Geophysics, 49. https://doi.org/10.1029/2010RG000336

» https://doi.org/10.1029/2010RG000336

Roberts, A. P., Pike, C. R. & Verosub, K. L. 2000. First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research, 105, 28461-28475. DOI: https://doi.org/10.1029/2000JB900326

» https://doi.org/10.1029/2000JB900326

Roberts, A. P. & Weaver, R. 2005. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters , 231, 263-277. DOI: https://doi.org/10.1016/j.epsl.2004.11.024

» https://doi.org/10.1016/j.epsl.2004.11.024

Robinson, S. G., Sahota, J. T. S. & Oldfield, F. 2000. Early diagenesis in North Atlantic abyssal plain sediments characterized by rock-magnetic and geochemical indices. Marine Geology , 163, 77-107. DOI: https://doi.org/10.1016/S0025-3227(99)00108-5

» https://doi.org/10.1016/S0025-3227(99)00108-5

Rodelli, D., Jovane, L., Giorgioni, M., Siciliano Rego, E., Cornaggia, F., Benites, M., Padua, P., Berbel, G., Braga, E., Ustra, A., Abreu, F. & Roberts, A. 2019. Diagenetic Fate of Biogenic Soft and Hard Magnetite in Chemically Stratified Sedimentary Environments of Mamanguá Ría, Brazil. Journal of Geophysical Research : Solid Earth, 124(3), 2313-2330. DOI: https://doi.org/10.1029/2018JB016576

» https://doi.org/10.1029/2018JB016576

Rodelli, D., Jovane, L., Roberts, A. P., Cypriano, J., Abreu, F. & Lins, U. 2018. Fingerprints of partial oxidation of biogenic magnetite from cultivated and natural marine magnetotactic bacteria using synchrotron radiation. Environmental Microbiology Reports, 10, 337-343. DOI: https://doi.org/10.1111/1758-2229.12644

» https://doi.org/10.1111/1758-2229.12644

Rowan, C. J. & Roberts, A. P. 2006. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth and Planetary Science Letters , 241, 119-137. DOI: https://doi.org/10.1016/j.epsl.2005.10.017

» https://doi.org/10.1016/j.epsl.2005.10.017

Rowan, C. J. & Roberts, A. P. 2005. Tectonic and geochronological implications of variably timed magnetizations carried by authigenic greigite in marine sediments from New Zealand. Geology , 33, 553-556. DOI: https://doi.org/10.1130/G21382.1

» https://doi.org/10.1130/G21382.1

Rowan, C. J., Roberts, A. P. & Broadbent, T. 2009. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth and Planetary Science Letters , 277, 223-235. DOI: https://doi.org/10.1016/j.epsl.2008.10.016

» https://doi.org/10.1016/j.epsl.2008.10.016

Sagnotti, L., Roberts, A. P., Weaver, R., Verosub, K. L., Florindo, F., Pike, C. R., Clayton, T. & Wilson, G. S. 2005. Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite. Geophysical Journal International , 160, 89-100. DOI: https://doi.org/10.1111/j.1365-246X.2005.02485.x

» https://doi.org/10.1111/j.1365-246X.2005.02485.x

Skinner, B. J., Erd, R. C. & Grimaldi, F. S. 1964. Greigite, the thio-spinel of iron; a new mineral. American Mineralogist, 49, 543-555.

Stramma, L., Johnson, G.C., Sprintall, J. & Mohrholz, V. 2008. Expanding Oxygen-Minimum Zones in the Tropical Oceans. Science, 320, 655-658. DOI: https://doi.org/10.1126/science.1153847

» https://doi.org/10.1126/science.1153847

Swart, P. K. 2000. The oxygen isotopic composition of interstitial waters: Evidence for fluid flow and recrystallization in the margin of the Great Bahama Bank. Proceedings of the Ocean Drilling Program, Scientific Results,166. DOI: https://doi.org/10.2973/odp.proc.sr.166.130.2000

» https://doi.org/10.2973/odp.proc.sr.166.130.2000

Till, J. L. & Nowaczyk, N. 2018. Authigenic magnetite formation from goethite and hematite and chemical remanent magnetization acquisition. Geophysical Journal International , 213, 1818-1831. DOI: https://doi.org/10.1093/gji/ggy083

» https://doi.org/10.1093/gji/ggy083

Tjallingii, R., Röhl, U., Kölling, M. & Bickert, T. 2007. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochemistry, Geophysics, Geosystems, 8. DOI: https://doi.org/10.1029/2006GC001393

» https://doi.org/10.1029/2006GC001393

Torii, M., Fukuma, K., Horng, C.-S. & Lee, T.-Q. 1996. Magnetic discrimination of pyrrhotite- and greigite-bearing sediment samples. Geophysical Research Letters , 23, 1813-1816. DOI: https://doi.org/10.1029/96GL01626

» https://doi.org/10.1029/96GL01626

Weiss, R. F., Broecker, W. S., Craig, H. & Spencer, D. 1983. GEOSECS Indian Ocean Expedition: Hydrographic data 1977-1978. Washington, National Science Foundation.

Wasilewski, P. J. 1973. Magnetic hysteresis in natural materials. Earth and Planetary Science Letters , 20, 67-72. DOI: https://doi.org/10.1016/0012-821X(73)90140-4

» https://doi.org/10.1016/0012-821X(73)90140-4

Weltje, G. & Tjallingii, R. 2008. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth and Planetary Science Letters , 274, 423-438. https://doi.org/10.1016/j.epsl.2008.07.054

» https://doi.org/10.1016/j.epsl.2008.07.054

Wilkin, R. T. & Barnes, H. L. 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta , 61, 323-339. DOI: https://doi.org/10.1016/S0016-7037(96)00320-1

» https://doi.org/10.1016/S0016-7037(96)00320-1

Yamazaki, T., Abdeldayem, A.L. & Ikehara, K. 2003. Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30,000 years. Earth, Planets and Space , 55, 327-340. DOI: https://doi.org/10.1186/BF03351766

» https://doi.org/10.1186/BF03351766

Downloads

Published

10.04.2024

How to Cite

Evidence of magnetite reduction and primary magnetization destruction during early diagenesis in sediments from Maldives Inner Sea. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/