How is copepod functional diversity shaped by 2015-2016 El Niño and seasonal water masses in a coastal ecosystem of Southwest Atlantic?

Authors

  • Bárbara Santos Menezes
  • Érica Caroline Becker
  • Flora Balcão Agnelli
  • Luis Carlos Pinto de Macedo-Soares
  • Cristina de Oliveira Dias
  • Andrea Santarosa Freire

DOI:

https://doi.org/10.1590/

Keywords:

Zooplankton, Copepod traits, Marine Protected Area, ENSO, Brazilian Continental Shelf

Abstract

Functional traits, short life cycles, and the pivotal role in the ocean make copepod diversity a solid foundation for
assessing the effect of global changes in marine food webs and ecosystem functioning. Climate change and extreme
events, particularly El Niño, can affect coastal ecosystems. The Arvoredo Marine Biological Reserve (MPA), located
in highly productive coastal waters of the Southern Brazilian Bight, presents complex climate and oceanographic
conditions. This study investigates the influence of oceanographic processes and El Niño 2015-2016 on the copepod
functional diversity from 2014 to 2016 in the Arvoredo MPA. Horizontal tows were performed using a WP2 net with
a mesh size of 200 µm. The 41 species accounted for 19 functional entities and four functional groups. Our findings
reveal that the seasonal intrusion of water masses influenced copepod functional diversity. During summer, the
upwelling of South Atlantic Central Water increased nutrient availability and favored large herbivore-omnivores
and carnivores. The Plata Plume Water enrichment during winter coincided with a decline in functional richness and
abundance, leading to the predominance of the Oithona nana, a small-sized omnivore. Compensatory mechanisms
were observed as functional equivalence and species composition shifts. Acartia lilljeborgii and Temora turbinata
exhibited functional equivalence and compensated for each other in response to salinity changes associated
with upwelling and El Niño. The copepod assemblage demonstrated the ability to maintain functional diversity despite
changes in copepod abundance. However, the decline in functional diversity and abundance during the intense winter
indicated potential disruption in trophic dynamics and ecosystem functioning. Maintaining balance and compensating
for disturbances such as El Niño is crucial for marine food web resilience. The functional trait approach provided a
comprehensive understanding of the copepod assemblage in Arvoredo MPA, contributing to a broader knowledge
of the impact of oceanographic processes intensification. Monitoring functional diversity and abundance is crucial for
evaluating the effects of copepod assemblage changes in ecosystem functionings.

References

Albers, S. 2020. Rsoi: Import Various Northern and

Southern Hemisphere Climate Indices. Acessed: https://

CRAN.R-project.org/package=rsoi.

Acha, E. M., Mianzan, H. W., Guerrero, R. A., Favero, M.,

Bava, J., Acha, E. M., Mianzan, H. W., Guerrero, R. A.,

Favero, M. & Bava, J. 2004. Marine fronts at the continental

shelves of austral South America: Physical and ecological

processes. Journal of Marine Systems, 44(1–2), 83–105.

DOI: https://doi.org/10.1016/j.jmarsys.2003.09.005

Azam, F., Fenchel, T., Field, J., Gray, J., Meyer-Reil, L. &

Thingstad, F. 1983. The Ecological Role of Water-Column

Microbes in the Sea. Marine Ecology Progress Series,

, 257–263. DOI: https://doi.org/10.3354/meps010257

Benedetti, F., Gasparini, S. & Ayata, S.-D. 2016. Identifying

copepod functional groups from species functional

traits. Journal of Plankton Research, 38(1), 159–166.

DOI: https://doi.org/10.1093/plankt/fbv096

Benedetti, F., Vogt, M., Righetti, D., Guilhaumon, F. &

Ayata, S.-D. D. 2018. Do functional groups of planktonic

copepods differ in their ecological niches? Journal

of Biogeography, 45(3), 604–616. DOI: https://doi.

org/10.1111/jbi.13166

Benedetti, F., Jalabert, L., Sourisseau, M., Becker, B.,

Cailliau, C., Desnos, C., Elineau, A., Irisson, J.,

Lombard, F., Picheral, M., Stemmann, L. & Pouline,

P. 2019. The Seasonal and Inter-Annual Fluctuations

of Plankton Abundance and Community Structure in

a North Atlantic Marine Protected Area. Frontiers in

Marine Science, 6, 1–16. DOI: https://doi.org/10.3389/

fmars.2019.00214

Björnberg T. K. S. 1981. COPEPODA. In: Boltovskoy, D.

(ed.), Atlas del Zooplancton del Atlantico Sudoccidental

y métodos de trabajo con el zooplancton marino (pp.

–168). Mar del Plata: INIDE.

Borcard, D., Gillet, F. & Legendre, P. 2018. Numerical

Ecology with R (2nd ed.). New York: Springer.

Bordin, L. H., Machado, E. C., Carvalho, M., Freire, A.

S. & Fonseca, A. L. D. O. 2019. Nutrient and carbon

dynamics under the water mass seasonality on the

continental shelf at the South Brazil Bight. Journal

of Marine Systems, 189, 22–35. DOI: https://doi.

org/10.1016/j.jmarsys.2018.09.006

Bradford-Grieve J. M., Markhaseva E. L., Rocha C. E. F.

& Abiahy B. 1999. Copepoda. In: Boltovskoy D. (ed.).

South Atlantic Zooplankton (2nd ed, pp. 869-1098).

Leiden: Backhuys Publishers.

Brandini, F. P., Tura, P. M. & Santos, P. P. G. M. 2018.

Ecosystem responses to biogeochemical fronts in the

South Brazil Bight. Progress in Oceanography, 164, 52–

DOI: https://doi.org/10.1016/j.pocean.2018.04.012

Brun, P., Payne, M. R. & Kiørboe, T. 2017. A trait database

for marine copepods. Earth System Science Data, 9(1),

–113. DOI: https://doi.org/10.5194/essd-9-99-2017

Calbet, A. 2008. The trophic roles of microzooplankton in

marine systems. ICES Journal of Marine Science, 65(3),

–331. DOI: https://doi.org/10.1093/icesjms/fsn013

Clarke, K. R., Somerfield, P. J. & Gorley, R. N. 2008. Testing

of null hypotheses in exploratory community analyses:

similarity profiles and biota-environment linkage.

Journal of Experimental Marine Biology and Ecology,

(1–2), 56–69. DOI: https://doi.org/10.1016/j.

jembe.2008.07.009

CPTEC/INPE. 2016. Condições atuais do ENOS:

caracterização do EL-NIÑO. Acessed: http://enos.

cptec.inpe.br

Floeter, S. R., Rocha, L. A., Robertson, D. R., Joyeux,

J. C., Smith-Vaniz, W. F., Wirtz, P., Edwards, A. J.,

Barreiros, J. P., Ferreira, C. E. L., Gasparini, J. L., Brito,

A., Falcón, J. M., Bowen, B. W. & Bernardi, G. 2008.

Atlantic reef fish biogeography and evolution. Journal of

Biogeography, 35, 22–47.

Freire, A. S., Varela A. R. D., Fonseca A. L., Menezes B. S.,

Fest C. B., Obata C. S., Gorri C., Franco D., Machado E.

C., Barros G., Molesani L. S., Madureira L. A. S., Coelho

M. P., Carvalho M. & Pereira T. L. 2017. O Ambiente

Oceanográfico. In: Segal B., Freire A.S., Lindner A.,

Krajewski J.P. & Soldateli M. (org.). Monitoramento

Ambiental da Reserva Biológica Marinha do Arvoredo

(vol. 1, pp. 159-200). Campinas: Beringela. http://www.

maare.ufsc.br/wp-content/uploads/2018/06/Livro_

MAArE_Oficial_crip-.pdf

Frontier, S. 1981. Cálculo del error en el recuento de

organismos zooplanctónicos. In: Boltovskoy, D. (ed.),

Atlas del Zooplancton del Atlantico Sudoccidental y

métodos de trabajo con el zooplancton marino (pp.

–168). Mar del Plata: INIDEP.

Gower, J.C. 1971. A General Coefficient of Similarity and

Some of Its Properties. Society, 27, 857–871.

Grasshoff K., Ehrhardt M. & Kremling K. 1983. Methods of

Seawater Analysis (2nd ed). Weimnheim: Verlag Chemie.

Hébert, M., Beisner, B. E. & Maranger, R. 2017. Linking

zooplankton communities to ecosystem functioning:

toward an effect-trait framework. Journal of Plankton

Research, 39(1), 3–12. DOI: https://doi.org/10.1093/

plankt/fbw068

Heiberger, R. M. 2013. HH: Statistical Analysis and Data

Display. In: Heiberger & Holland. R package version

1-34. https://CRAN.R-project.org/package=HH.

Hooper, D. U., Chapin Iii, F. S., Ewel, J. J., Hector, A.,

Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M.,

Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad,

A. J., Vandermeer, J. & Wardle, D. A. 2005. Effects of

biodiversity on ecosystem functioning: a consensus of

current knowledge. Ecological Monographs, 75(1), 3–35.

Hubbell, S. P. 2005. Neutral theory in community ecology

and the hypothesis of functional equivalence. Functional

Ecology, 19, 166–172.

Kiørboe, T. 2011. How zooplankton feed: Mechanisms, traits

and trade-offs. Biological Reviews, 86(2), 311–339.

DOI: https://doi.org/10.1111/j.1469-185X.2010.00148.x

Copepod diversity in the Southwest Atlantic

Ocean and Coastal Research 2024, v72(suppl 1):e24006 18

Menezes et al.

Kiørboe, T., Ceballos, S. & Thygesen, U. H. 2015.

Interrelations between senescence, life-history traits,

and behavior in planktonic copepods. Ecology, 96(8),

–2235. DOI: https://doi.org/10.1890/14-2205.1

Kozak, E. R., Olivos-ortiz, A., Franco-gordo, C. & Pelayomartínez, G. 2018. Seasonal variability of copepod

community structure and abundance modified by the El

Niño-La Niña transition (2010), Pacific, Mexico. Revista

de Biología Tropical, 66(4), 1449–1468. DOI: https://doi.

org/10.15517/rbt.v66i4.32058

Laliberté, E., Legendre, P. & Shipley, B. 2015. Package

‘FD.’ Measuring functional diversity (FD) from multiple

traits, and other tools for functional ecology, 1–28.

Legendre, P. & Legendre, L. 2012. Numerical Ecology

(3rd ed). Amsterdam: Elsevier.

Litchman, E., Ohman, M. D. & Kiørboe, T. 2013. Trait-based

approaches to zooplankton communities. Journal of

Plankton Research, 35(3), 473–484. DOI: https://doi.

org/10.1093/plankt/fbt019

Mackas, D. L., Pepin, P. & Verheye, H. 2012. Interannual

variability of marine zooplankton and their environments:

Within- and between-region comparisons. Progress in

Oceanography, 97–100, 1–14.

McEwen G. F., Johnson M. W., Folsom T. R. 1954. A

statistical analysis of the performance of the Folsom

plankton sample splitter, based upon test observations.

Archiv für Meteorologie, Geophysik und Bioklimatologie,

(7), 502–527.

Menezes, B. S., Macedo-Soares, L. C. P. & Freire, A. S.

Changes in the plankton community according to

oceanographic variability in a shallow subtropical shelf:

SW Atlantic. Hydrobiologia, 835, 165–178. DOI: https://

doi.org/10.1007/s10750-019-3936-5

Misturini, D. & Segal, B. 2017. A REBIO Arvoredo e o projeto

MAArE. In: Segal B., Freire A.S., Lindner A., Krajewski

J.P. & Soldateli M. (org.). 2017. Monitoramento

Ambiental da Reserva Biológica Marinha do Arvoredo.

(vol. 1, pp. 159-200). Campinas: Beringela. Acessed:

http://www.maare.ufsc.br/wp-content/uploads/2018/06/

Livro_MAArE_Oficial_crip-.pdf

Möller Jr, O. O., Piola, A. R., Freitas, A. C. & Campos, E. J.

D. D. 2008. The effects of river discharge and seasonal

winds on the shelf off southeastern South America.

Continental Shelf Research, 28(13), 1607–1624. DOI:

https://doi.org/10.1016/j.csr.2008.03.012

Mouillot, D., Graham, N.A.J., Villéger, S., Mason, N.W.H.

& Bellwood, D.R. 2013. A functional approach reveals

community responses to disturbances. Trends in

Ecology & Evolution, 28(3), 167–177.

Neumann-Leitão, S., Melo, P. A. M. C., Schwamborn,

R., Diaz, X. F. G., Figueiredo, L. G. P., Silva, A. P.,

Campelo, R. P. S., Júnior, M. de M., Melo, N. F. A. C.,

Costa, A. E. S. F., Araújo, M., Veleda, D. R. A., Moura,

R. L. & Thompson, F. 2018. Zooplankton from a reef

system under the influence of the Amazon River plume.

Frontiers in Microbiology, 9, 1–15. DOI: https://doi.

org/10.3389/fmicb.2018.00355

Nychka D., Furrer R., Paige J. & Sain S. 2021. fields: Tools

for spatial data. R package version 14.1. Acessed:

https://github.com/dnychka/fieldsRPackage

Oksanen J., Blanchet F. G., Kindt R., Minchin P. R., O’Hara

R. B., Simpson G. L., Solymos P., Stevens M. H. H.

& Wagner H. H. 2019. vegan: Community Ecology

Package. R package version 2.0-7. Acessed: http://

CRAN.R-project.org/package=vegan

Piola, A. R., Möller Jr., O. O., Guerrero, R. a. & Campos,

E. J. D. 2008. Variability of the subtropical shelf front off

eastern South America: Winter 2003 and summer 2004.

Continental Shelf Research, 28(13), 1639–1648. DOI:

https://doi.org/10.1016/j.csr.2008.03.013

Razouls C., Bovée F. de, Kouwenberg J. & Desreumaux N.

Diversity and Geographic Distribution of Marine

Planktonic Copepods. Acessed: http://copepodes.obsbanyuls.fr/en

R Core Team. 2022. R: A language and environment for

statistical computing. R Foundation for Statistical

Computing. URL https://www.R-project.org/.

Rossi, S. & Soares, M. D. O. 2017. Effects of El Niño on the

coastal ecosystems and their related services. Mercator,

(e16030), 1–16. DOI: https://doi.org/10.4215/rm2017.

e16030

Schlitzer, R. 2016. Ocean Data View. Acessed: http://odv.

awi.de.

Scor-Unesco. 1966. Determination of photosynthetic

pigments. Monographs on Oceanographic Methodology,

, 9-18.

Sherr, E. & Sherr, B. 1988. Role of microbes in pelagic

food webs: A revised concept. Limnology and

Oceanography, 33(5), 1225–1227. DOI: https://doi.

org/10.4319/lo.1988.33.5.1225

Villéger, S., Mason, N. W. H. & Mouillot, D. 2008. New

multidimensional functional diversity indices for a

multifaceted framework in functional ecology. Ecology,

(8), 2290–2301.

Vineetha, G., Karati, K. K., Raveendran, T. V, Babu, K. K. I.,

Riyas, C., Muhsin, M. I., Shihab, B. K., Simson, C. & Anil,

P. 2018. Responses of the zooplankton community to peak

and waning periods of El Niño 2015–2016 in Kavaratti

reef ecosystem, northern Indian Ocean. Environmental

Monitoring and Assessment, 190(465). DOI: https://doi.

org/https://doi.org/10.1007/s10661-018-6842-9

Walter T. C. & Boxshall G. 2018. World of Copepods

database. Acessed: http://www.marinespecies.org/

copepoda.

Whitaker D. & Christman M. 2014. clustsig: Significant

Cluster Analysis. R package version 1.1. Acessed:

https://CRAN.R-project.org/package=clustsig.

Wickham, H. 2016. ggplot2: Elegant Graphics for Data

Analysis. New York: Springer-Verlag.

Zhang, X., Tan, L., Cai, Q. & Ye, L. 2022. Environmental

factors indirectly reduce phytoplankton community

stability via functional diversity. Frontiers in Ecology and

Evolution, 10, 990835.

Downloads

Published

2024-05-08

Issue

Section

Original Article

How to Cite

How is copepod functional diversity shaped by 2015-2016 El Niño and seasonal water masses in a coastal ecosystem of Southwest Atlantic?. (2024). Ocean and Coastal Research, 72(Suppl. 1). https://doi.org/10.1590/