Sediment transport trend in an erosive sandy beach: the case of Matinhos Beach, south coast of Brazil

Authors

  • David M. Luersen
  • Alexandre B. Lopes
  • Guilherme. A. S. Franz
  • Danilo Mildemberger
  • Mauricio A. Noernberg

DOI:

https://doi.org/10.1590/

Keywords:

Coastal processes, Numerical modeling, MOHID, Coastal management, Sediment transport

Abstract

Sandy beaches have different shoreline change rates (i.e., erosion/accretion rates). An erosive process on
beaches poses risks for human-occupied areas. One example is Matinhos Beach (state of Paraná - Brazil),
which has an average annual erosion rate of around 1.5 m yr-1 This study applied a methodology that combines
in situ measurements and numerical modeling to simulate the physical processes in the coastal area of Matinhos
during the 2018 Austral winter. Monthly DGPS surveys were carried out in the study area from June to September.
The MOHID modeling system was applied to simulate hydrodynamics and sediment transport, considering
waves and tidal forcing validated with in situ data. The WAVEWATCH III and SWAN models were applied in a
nesting approach to simulate the waves at Matinhos Beach. The GFS was used to assess the wind conditions.
The study period showed a dynamic evolution of accretion and erosion between monthly measurements with
no clear pattern in most profiles. Significant sand accumulation was observed near the headland. Morphological
changes were minor due to the predominance of low energy without significant storm events. The measured
morphological changes are in line with the residual littoral drift obtained from the modeling results for the period.
The residual current velocities were towards the southwest, with magnitudes ranging from 0.15 m s-1 to 0.2 m s-1.
A slight variation in the angle of wave incidence (10°) may change the direction (southwest or northeast) and
intensity of the littoral drift. The applied methodology can reduce uncertainty and support effective coastal
management. However, the seasonal scales of wave climate cannot be disregarded, nor can the need for
coastal oceanographic data.

References

Alexandrakis, G., Manasakis, C. & Kampanis, N. A. 2015.

Valuating the effects of beach erosion to tourism

revenue. A management perspective. Ocean & Coastal

Management, 111, 1–11.

Angelotti, R. & Noernberg, M. A. 2010. Análise dos riscos

ao banho de mar no município de Pontal do Paraná-PR

– Temporada 2003/2004. Brazilian Journal of Aquatic

Science and Technology, 14, 65–75.

Angulo, R. J. 1992. Geologia da Planície Costeira do

Estado do Paraná (Doutorado em Geociências). São

Paulo: Universidade Federal de São Paulo.

Angulo, R. J., Souza, M. C., Muller, E. J., Noernberg, M.

A., Oliveira, L. H. S., Soares, C. R., Borzone, C. A.,

Marone, E. & Quadros, C. L. 2018. Panorama da erosão

costeira - Paraná. In: Muehe, D. (Org.). Panorama da

erosão costeira no Brasil (vol. 1, pp. 586-640). Brasília,

DF: MMA.

Angulo, R. J. 2000. As praias do Paraná: problemas

decorrentes de uma ocupação inadequada. Revista

Paranaense de Desenvolvimento, 99, 97-103.

Angulo, R. J., Borzone, C. A., Noernberg, M. A., Quadros,

J. L., Souza, M. C. & Rosa, L. C. 2016. The State of

Paraná Beaches. In: Short, A. D. & Klein, A. H. F (eds.).

Brazilian Beach Systems. Cham: Springer International

Publishing.

Bessa Jr, O. 2003. O. Interferência entre a ocupação

urbana e a dinâmica natural no Litoral Sul do Paraná.

Análise Conjuntural - IPARDES, 25(11–12), 13-17.

Bigarella, J. J., Becker, R.D., Matos, D. J. & Werner, A. 1978.

A Serra do Mar e a porção oriental do estado do Paraná:

um problema de segurança ambiental e nacional.

Curitiba: Secretaria de Estado do Planejamento - ADEA

(Associação de Defesa e Educação Ambiental).

Billé, R. 2008. Integrated Coastal Zone Management: four

entrenched illusions. S.A.P.I.E.N.S, 1(2). Available from:

https://journals.openedition.org/sapiens/198 . Access

date: 05 Jan. 2019.

Bocamazo, L. M., Grosskopf, W. G. & Buonuiato, F. S.

Beach Nourishment, Shoreline Change, and

Dune Growth at Westhampton Beach, New York, 1996

– 2009. Journal of Coastal Research, 59, 181–191.

Booij, N., Ris, R. & Holthuijsen, L. H. 1999. A thirdgeneration wave model for coastal regions: 1. Model

description and validation, Journal of Geophysical

Research Oceans, 104, 7649–7666.

Borzone, C. A., Souza, J. R. B. & Soares, A. G. 1996.

Morphodynamic influence on the structure of inter

and subtidal macrofaunal communities of subtropical

sandy beaches. Revista Chilena de Historia Natural, 69,

–577.

Cecilio, R. O. & Dillenburg, S. R. 2020. An ocean windwave climatology for the Southern Brazilian Shelf. Part

I: Problem presentation and model validation. Dynamics

of Atmospheres and Oceans, 89, 101101.

Cooper, J. A. G. & Mckenna, J. 2008. Social Justice in

coastal erosion management: The temporal and spatial

dimensions. Geoforum, 39, 294–306.

De Souza, M. M., Mathis, M., Mayer, B., Noernberg, M. A. &

Pohlmann, T. 2020. Possible impacts of anthropogenic

climate change to the upwelling in the South Brazil

Bight. Climate Dynamics, 55, 651–664.

Ferreira, S.T.A., Amaro, E. V & Santos, T. S. M. 2014.

Applied geodesy to integration of topographic and

bathymetric data in the characterization of beaches

surfaces. Revista Brasileira de Cartografia, 66, 167–184.

Franz, G., Delpey, M. T., Brito, D., Pinto, L., Leitão, P. &

Neves, R. 2017a. Modelling of sediment transport and

morphological evolution under the combined action of

waves and currents. Ocean Science Discussions, 13,

-690. DOI: https://doi.org/10.5194/os-13-673-2017

Franz, G., Leitão, P., Pinto, L., Jauch, E., Fernandes, L.

& Neves, R. 2017b. Development and validation of a

morphological model for multiple sediment classes.

International Journal of Sediment Research, 32,

-596.

Franz, G., Garcia, C. A. E., Pereira J., Freitas, A. L. P.,

Rollnic, M., Garbossa, L. H. P., Cunha, L. C., Lentini

C. A. D., Nobre, P., Turra, A., Trotte-Duhá, J. R.,

Cirano, M., Estefen, S. F., Lima, J. A. M., Paiva, A. M.,

Noernberg, M. A., Tanajura, C. A. S., Moutinho, J. L.,

Campuzano, F., Pereira, E. S., Lima, A. C., Mendonça,

L. F. F., Nocko, H., Machado, L., Alvarenga, J. B. R.,

Martins, R. P., Böck, C. S., Toste, R., Landau, L.,

Miranda, T., Santos F., Pellegrini, J., Juliano, M., Neves,

R. & Polejack, A. 2021 Coastal Ocean Observing and

Modeling Systems in Brazil: Initiatives and Future

Ocean and Coastal Research 2024, v72(suppl 1):e24030 16

Luersen et al. Sediment transport trend in a sandy beach

Perspectives. Frontiers in Marine Science, 8, 681619.

DOI: https://doi.org/10.3389/fmars.2021.681619

Galgano, F. A. Jr. 2004. Long-Term Effectiveness of a

Groin and Beach Fill System: A Case Study Using

Shoreline Change Maps. Journal of Coastal Research,

, 3-18.

Griggs, G. B. 2005. The Impacts of Coastal Armoring.

Shore & Beach, 73, 13-22.

Hinkel, J., Nicholls, R. J., Tol, R. S. J., Wang, Z. B.,

Hamilton, J. M., Boot G., Vafeidis, A. T., Mcfadden

L., Ganopolski, A. & Klein, R. J. T. 2013. A global

analysis of erosion of sandy beaches and sea-level

rise: An application of DIVA. Global and Planetary

Change,111,150-158.

Houston, J. R. 2013. The economic value of beaches - a

update. Shore & Beach, 81, 3-10.

IBGE (Instituto Brasileiro De Geografia E Estatística). 2018.

Modelo de ondulação geoidal. Rio de Janeiro, IBGE.

Available from: https://www.ibge.gov.br/geociencias/

informacoes-sobre-posicionamento-geodesico/

servicos-para-posicionamento-geodesico/10855-

modelo-de-ondulacao-geoidal.html. Access date: 17

Sep. 2018.

IPCC, 2022. Climate Change 2022: Impacts, Adaptation, and

Vulnerability. Contribution of Working Group II to the Sixth

Assessment Report of the Intergovernmental Panel on

Climate Change. Cambridge University Press, Cambridge.

Komar, P. D. 1976. Beach Processes and Sedimentation.

Hoboken, Prentice Hall.

Lana, P.C., Marone, E., Lopes, R. M. & Machado, E. C.

The subtropical estuarine complex of Paranaguá

Bay, Brazil. In: Seeliger, U., Lacerda L. D. & Kjerfve B.

J. (Org.). Coastal Marine Ecosystems of Latin America

(pp. 131-145). Berlin: Springer Verlag.

Leitão, P. C. 2003. Integração de Escalas e Processos

na Modelação do Ambiente Marinho (Ph.D. Thesis).

Lisboa: Universidade Técnica de Lisboa.

Leitão, P. C., Mateus, M., Braunschweig, L., Fernandes,

L. & Neves, R. (Ed.). 2008. Modelling coastal

systems: the MOHID Water numerical lab. In: Leitão,

P. C., Mateus, M., Braunschweig, L., Fernandes, L.

& Neves, R. Perspectives on integrated coastal zone

management in South America (pp. 77-88). Lisboa:

IST Press.

Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F.,

Donchyts, G. & Aarninkhof, S. 2018. The State of the

World’s Beaches. Scientific Reports, 8, 1-11.

MARETEC. 2017. MOHID - Water Modelling System,

Lisboa, MARETEC. Available from: http://www.mohid.

com/. Access date: 14 Oct. 2017.

Marone, E. & Camargo, R. 1994. Marés meteorológicas no

litoral do Estado do Paraná: o evento de 18 de agosto

de 1993. Nerítica, 8, 73-85.

Martins, F. 2000. Modelação Matemática Tridimensional

de escoamentos costeiros e estuarinos usando uma

abordagem de coordenada vertical genérica (Ph.D.

Thesis), Lisboa: Universidade Técnica de Lisboa.

Martins, F., Neves, R. J., Leitão, P. C. & Silva, A. 2001.

D modelling in the Sado estuary using a new generic

coordinate approach. Oceanologica Acta, 24, 51-62.

Marzetti, S., Disegna, M., Koutrakis, E., Sapounidis, A.,

Marin, V., Martino, S., Roussel, S., Rey-Valette, H. &

Paoli, C. 2016. Visitors’ awareness of ICZM and WTP

for beach preservation in four European Mediterranean

regions. Marine Policy, 63, 100-108.

NOAA (National Oceanic and Atmospheric Administration).

Global Forecast System (GFS). Available from:

https://www.ncdc.noaa.gov/data-access/model-data/

model-datasets/global-forcast-system-gfs. Access date:

Sep. 2018.

Noernberg, M., Marone, E. & Angulo, R. 2007. Coastal

currents and sediment transport in Paranaguá estuary

complex navigation channel. Boletim Paranaense de

Geociências, 60–61, 45–54.

Noernberg, M. & Alberti, A., 2014. Oceanographic variability

in the inner shelf of Paraná, Brazil: Spring condition.

Revista Brasileira de Geofísica, 32, 197–206.

Nordstrom, K. F. 2014. Living with shore protection

structures: A review. Estuarine, Coastal and Shelf

Science, 150 Part-A, 11-23. DOI: https://doi.

org/10.1016/j.ecss.2013.11.003

Novak, L. P., Lamour, M. R. & Cattani, P. E. 2016.

Vulnerabilidade aos processos erosivos no litoral

do Paraná estabelecido pela aplicação da análise

multicritérios. RA’EGA - O Espaço Geográfico em

Análise, 38, 195-218.

Oliveira, B. A., Sobral, F., Fetter, A. & Mendez, F. J. 2019.

A high-resolution wave hindcast off Santa Catarina

(Brazil) for identifying wave climate variability. Regional

Studies in Marine Science, 32, 100834.

Paraná State Government. 2019. Paraná entrega projeto

da orla de Matinhos em Brasília. 2019. Agência

estadual de notícias, Curitiba. Available from:

http://www.aen.pr.gov.br/modules/noticias/article.

php?storyid=102255&tit=Parana-entrega-projeto-daorla-de-Matinhos-em-Brasilia. Access date: 30 May 2019.

Ratton, E. 2020. Parecer técnico sobre a recuperação da

orla de Matinhos, controle de cheias e revitalização

urbanística. Curitiba, UFPR. Available from: https://itti.

org.br/wp-content/uploads/2020/11/parecer-tecnicorecuperacao-da-orla-de-matinhos.pdf. Access date:

Jun. 2023.

Reguero, B. G., Méndez, F. J. & Losada, I. J. 2013.

Variability of multivariate wave climate in Latin America

and the Caribbean. Global and Planetary Change, 100,

–84.

Sampaio, R. 2006. The occupation of Paraná’s beach

coasts for balneal use. Desenvolvimento e Meio

Ambiente, 13, 169-186.

Sayão, O. J. 1989. Littoral drift along some beaches in Brazil.

In: Magoon, O. T., Converse, H., Miner, D., Tobin, L. T.

& Clark, D. (Ed.). Proceedings of the 6th symposium on

coastal and ocean management (vol. 4, pp. 3638-3746).

Reston: American Society of Civil Engineers.

Silvester, R. 1960. Stabilization of sedimentary coastlines.

Nature, 188, 467.

Souza, M. C., Angulo, R. J., Assine, M. L. & Castro, D. L.

Sequence of facies at a Holocene stormdominated

regressive barrier at Praia de Leste, southern Brazil.

Marine Geology, 291–294, 49–62.

Sediment transport trend in a sandy beach

Ocean and Coastal Research 2024, v72(suppl 1):e24030 17

Luersen et al.

Soulsby, R. L. & Damgaard, J. S. 2005. Bedload sediment

transport in coastal waters. Coastal Engineering, 52, 673–689.

Tolman, H. L., Balasubramaniyan, B, Burroughs, L. D.,

Chalikov, D. V., Chao, Y. Y., Chen, H. S. & Gerald, V.

M. 2002. Development and implementation of wind

generated ocean surface waves models at NCEP.

Weather Forecast, 17, 311–333.

Tolman, H. L. 2009. User Manual and System Documentation

of WAVEWATCH III TM Version 3.14. NOAA/NWS/

NCEP/MMAB Technical Note 276. Camp Springs, U. S.

Department of Commerce.

Turki, I., Medina, R., Coco, G. & Gonzalez, M. 2013. An

equilibrium model to predict shoreline rotation of pocket

beaches. Marine Geology, 346, 220–232.

Umlauf, L., Burchard, H. & Bolding, K. G. O. T. M. 2018.

Sourcecode and Test Case Documentation. Available

from: http://gotm.net/manual/stable/pdf/a4.pdf. Access

date: 17 Sep. 2018.

Veiga, F. A. 2004. Sedimentologia, morfologia & dinâmica

da face da costa no litoral central do estado do Paraná.

M.Sc. Geologia Ambiental, Universidade Federal do

Paraná.

Downloads

Published

2024-05-08

Issue

Section

Original Article

How to Cite

Sediment transport trend in an erosive sandy beach: the case of Matinhos Beach, south coast of Brazil. (2024). Ocean and Coastal Research, 72(Suppl. 1). https://doi.org/10.1590/