The effect of extreme climatic events on littorinid snails in two estuarine environments, temperate (NW Spain) and tropical (NE Brazil)

Authors

  • Rafaela Camargo Maia
  • Jesus Souza Troncoso

DOI:

https://doi.org/10.1590/

Keywords:

Brazil, Climate change, Desiccation, Littoraria, Littorina, Spain

Abstract

Extreme weather events (e.g., droughts, excessive precipitation) are expected to increase in frequency and
severity in the coming decades due to climate change, causing significant impacts on society and ecosystems.
Because these events are rare and complex, they have been studied with manipulative experiments. Littorinidae
snails inhabit a complex and variable environment in which they must deal with periodic extreme events and
are thus considered excellent ecological models for these studies. Therefore, this study aimed to understand
the effects of extreme climatic events on the survival and weight of the species Littorina fabalis and Littorina
littorea in Spain and Littoraria angulifera and Littoraria flava in Brazil. Higher mortality rates and greater weight
loss were observed in the desiccation resistance treatment compared to the control treatment in both countries.
The results showed dependence on the species’ body size. The submergence tolerance treatment indicated
that the species from Spain are more susceptible to mortality in response to excessive rainfall and/or coastal
flooding. Each species tested for the effect of extreme climatic events using an integrated response strategy
with clear latitudinal differences. Understanding the organisms’ responses at different latitudes is essential for
conservation biology on a global scale.

References

Boehs, G. & Freitas, L. A. 2022. Population attributes

of Littoraria angulifera (Gastropoda: Littorinidae) in

mangroves in Bahia State, northeastern Brazil. Brazilian

Journal of Biology, 82, e243114. DOI: https://doi.

org/10.1590/1519-6984.243114

Boersma K. S., Nickerson, A., Francis, C. D. & Siepielski,

A. M. 2016. Climate extremes are associated with

invertebrate taxonomic and functional composition in

mountain lakes. Ecology and Evolution, 6, 8094–8106.

DOI: https://doi.org/10.1002/ece3.2517

Bosso, L., Smeraldo, S., Russo, D, Chiusano, M. L.,

Bertorelle, G., Johanneson, K., Butlin, K., Danovaro, R.

& Raffini, F. 2022. The rise and fall of an alien: why the

successful colonizer Littorina saxatilis failed to invade

the Mediterranean Sea. Biological Invasions, 24, 3169-

DOI: https://doi.org/10.1007/s10530-022-02838-y

Brahim, A., Mustapha, N. & Marshall, D. J. 2018. Nonreversible and Reversible Heat Tolerance Plasticity

in Tropical Intertidal Animals: Responding to Habitat

Temperature Heterogeneity. Frontiers in Physiology, 9,

-11. DOI: https://doi.org/10.3389/fphys.2018.01909

Britton, J. C. 1992. Evaporative water loss, behaviour

during emersion, and upper thermal tolerance limits

in seven species of eulittoral-fringe Littorinidae

(Mollusca: Gastropoda). In: International Symposium

on Littorinidae Biology (3 ed, pp. 69–83).

Cacabelos, E., Gestoso, L. & Troncoso, J. S. 2008.

Macrobenthic fauna in the Ensenada de San

Simón (Galicia, north-western Spain). Journal of

the Marine Biological Association of the United

Kingdom, 88, 237-245. DOI: https://doi.org/10.1017/

S0025315408000660.

Capaldo, P. S. 1983. Tolerance of the common marsh

snail Melampus bidentatus to submersion. Estuaries,

, 176–177.

Chapman, M. G., 1997. Relationships between shell

shape, water reserves, survival and growth of

highshore Littorinids under experimental conditions

in New South Wales, Australia. Journal of Molluscan

Studies, 63, 511–529.

Darnell, M. Z. & Darnell, K. M. 2018. Geographic variation

in thermal tolerance and morphology in a fiddler crab

sister-species pair. Marine Biology, 165, 26. DOI: https://

doi.org/10.1007/s00227-017-3282-y

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon,

S. A., Karl, T. R. & Mearns, L. O. 2000. Climate

Extremes: Observations, modeling, and impacts.

Science, 289, 2068-2074. https://doi.org/10.1126/

science.289.5487.2068

FUNCEME (Fundação Cearense De Meteorologia E

Recursos Hídricos). 2018. Posto meteorológico de

Acaraú. Availablr from: www.funceme.br. Acess date:

feb. 2024.

Iacarella, J. C. & Helmuth, B. 2011. Experiencing the salt

marsh environment through the foot of Littoraria irrorata:

Behavioral responses to thermal and desiccation

stresses. Journal of Experimental Marine Biology and

Ecology, 409, 143-153. DOI: https://doi.org/10.1016/j.

jembe.2011.08.011

Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen,

S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. &

Midgley, P. M. (eds.). 2013. Climate Change: The

Physical Science Basis. Cambridge, Cambridge

University Press.

Jentsch, A., Kreyling, J. & Beierkuhnlein, C. 2007. A new

generation of climate-change experiments: Events,

not trends. Frontiers in Ecology and the Environment,

, 365-374. DOI: https://doi.org/10.1890/1540-

(2007)5[365:ANGOCE]2.0.CO;2

Leeuwis R., H. J. & Gamperl, A. K. 2022. Adaptations and

plastic phenotypic responses of marine animals to the

environmental challenges of the high intertidal zone.

Oceanography and Marine Biology: An Annual Review,

, 625-680.

Liao M. L., Zhang, S., Zhang, G. Y., Chu, Y. M., Somero,

G. N. & Dong, Y. W. 2017. Heat-resistant cytosolic

malate dehydrogenases (cMDHs) of thermophilic

intertidal snails (genus Echinolittorina): protein

underpinnings of tolerance to body temperatures

reaching 55°C. Journal of Experimental Biology, 220,

-2075. DOI: https://doi.org/10.1242/jeb.156935

Maia, R. C. & Coutinho, R. 2012. Structural characteristics

of mangrove forest in Brazilian estuaries: A comparative

study. Journal of Marine Biology and Oceanography,

, 87-98.

Maia, R. C. & Troncoso, J. S. 2022. Evaluation of the

synergistic effects of climate change on estuarine

ecosystems at temperate and tropical latitudes using

Littorinids (Mollusca: Gastropoda) as indicators.

Brazilian Journal of Animal and Environmental

Research, 5, 1642-1660.

Marshall, D. J., Baharuddin, N. & Mcquaid, C. D. 2013.

Behavior moderates climate warming vulnerability in

high-rocky-shore snails: interactions of habitat use,

energy consumption and environmental temperature.

Marine Biology, 160, 2525–2530. DOI: https://doi.

org/10.1007/s00227-013-2245-1.

Marshall, D. J., Brahim, A., Mustapha, N., Dong, Y.

& Sinclair, B. J. 2018. Substantial heat tolerance

acclimation capacity in tropical thermophilic snails, but

to what benefit? Journal of Experimental Biology, 221,

jeb187476. DOI: https://doi.org/10.1242/jeb.187476

Marshall D. J., Mcquaid, C. D. & Williams, G. A. 2010.

Non-climatic thermal adaptation: Implications for

species’ responses to climate warming. Biology

Climate change impacts on littorinid snails

Ocean and Coastal Research 2024, v72(suppl 1):e24017 12

Maia and Troncoso

Letters, 6, 669–673. DOI: https://doi.org/10.1098/

rsbl.2010.0233

Matos, A., Matthews-Cascon, H. & Chaparro, O. 2020.

Morphometric analysis of the shell of the intertidal

gastropod Echinolittorina lineolata (d’Orbigny, 1840)

at different latitudes along the Brazilian coast. Journal

of the Marine Biological Association of the United

Kingdom, 100, 725-731. DOI: https://doi.org/10.1017/

S0025315420000624

Mcquaid, C. D. 1996a. Biology of the gastropod Family

Littorinidae: I. Evolutionary aspects. Oceanography and

Marine Biology: An Annual Review, 34, 233-262.

Mcquaid, C. D. 1996b. Biology of the gastropod Family

Littorinidae: II. Role in the ecology of intertidal and

shallow marine ecosystems. Oceanography and Marine

Biology: An Annual Review, 34, 263-302.

Mcmahon, R. F. 1988. Respiratory Response to Periodic

Emergence in Intertidal Molluscs. American Zoologist,

, 97-114.

Moreno, J. & Møler, A. P. 2011. Extreme climatic events

in relation to global change and their impact on life

histories. Current Zoology, 57, 375-389. DOI: https://

doi.org/10.1093/czoolo/57.3.375

Monjo, R., Gaitán, E., Pórtoles, J., Ribalaygua, J. & Torres, L.

Changes in extreme precipitation over Spain using

statistical downscaling of CMIP5 projections. International

Journal of Climatology, 36, 757–776. DOI: https://doi.

org/10.1002/joc.4380

Moutinho, P. R. S. & Alves-Costa, C. P. 2000. Shell size

variation and aggregation behavior of Littoraria flava

(Gastropoda: Littorinidae) on a Southeastern Brazilian

shore. Veliger, 43, 277–281.

Ng, T. P. T., Davies, M. S., Stafford, R. & Williams, G. A.

Mucus trail following a mate-searching strategy

in mangrove littorinid snails. Animal Behavior, 82, 459-

DOI: https://doi.org/10.1111/brv.12023

Ng, T. P.T., Laua, S. L. Y, Seuront, L., Davies, M. S.,

Staffordd, R., Marshall, D. J. & Williams, G. A. 2017.

Linking behavior and climate change in intertidal

ectotherms: insights from littorinid snails. Journal of

Experimental Marine Biology and Ecology, 492, 121-131.

DOI: https://doi.org/10.1016/j.jembe.2017.01.023

Parada, J. M., Molares, J. & Otero, X. 2012. Multispecies

Mortality Patterns of Commercial Bivalves in Relation to

Estuarine Salinity Fluctuation. Estuaries and Coasts, 35,

-142. DOI: https://doi.org/10.1007/s12237-011-9426-2

Perez-Arlucea, M., Mendez, G., Clemente, F., Nombela,

M., Rubio, B. & Filgueira, M. 2005. Hydrology, sediment

yield, erosion and sedimentation rates in the estuarine

environment of the Ría de Vigo, Galicia, Spain. Journal

of Marine Systems, 369, 79-86. DOI: https://doi.

org/10.1016/j.jmarsys.2004.07.013

Reid, D. G. 1996. Systematics and Evolution of Littorina.

London, Ray Society.

Reid, D. G., Dyal, P. & Williams, S. T. 2009. Global

diversification of mangrove fauna: a molecular

phylogeny of Littoraria (Gastropoda: Littorinidae).

Molecular Phylogenetics and Evolution, 55, 185–201.

DOI: https://doi.org/10.1016/j.ympev.2009.09.036

Reid, D. G. 1989. Comparative morphology, phylogeny

and evolution of the gastropod family Littorinidae.

Philosophical Transactions of the Royal Society of

London, Series B, 324(1220), 1-110. DOI: https://doi.

org/10.1098/rstb.1989.0040

Robins, P. E., Skov, M. W., Lewis, M. J., Gimenez, L., Davies, A.

G., Malham, S. K., Neill, S. P., Mcdonald, J. E., Whitton, T. A.,

Jackson, S. E. & Jago, C. F. 2016. Impact of climate change

on UK estuaries: A review of past trends and potential

projections. Estuarine, Coastal and Shelf Science, 169,

-135. DOI: https://doi.org/10.1016/j.ecss.2015.12.016

Rolán-Alvarez, E., Austin, C. J. & Boulding, E. G. 2015.

The contribution of the genus Littorina to the field

of evolutionary ecology. Oceanography and Marine

Biology: An Annual Review, 53, 157-214. DOI: https://

doi.org/10.1201/b18733-6.

Scheffers B. R., Edwards, D. P., Stephen, A. D., Williams,

E. & Evans, T. A. 2014. Microhabitats reduces animal’s

exposure to climate extremes. Global Change Biology,

, 495-503. DOI: https://doi.org/10.1111/gcb.12439

Sergio, F., Blas, B. & Hiraldo, F. 2018. Animal responses

to natural disturbance and climate extremes: a review.

Global and Planetary Change, 161, 28-40. DOI: https://

doi.org/10.1016/j.gloplacha.2017.10.009

Smith, M. D. 2011. An ecological perspective on extreme

climatic events: a synthetic definition and framework to

guide future research. Journal of Ecology, 99, 656–663.

DOI: https://doi.org/10.1111/j.1365-2745.2011.01798.x

Sheridan, J. A. & Bickford, D. 2011. Shrinking body

size as an ecological response to climate change.

Nature climate change, 1, 401-406. DOI: https://doi.

org/10.1038/nclimate1259

Tanaka, M. O. & Maia, R. C. 2006. Shell Morphological

Variation of Littoraria angulifera among and within

mangroves in NE Brazil. Hydrobiologia, 559, 193-202.

Vermeij, G. J. 1972. Intraspecific shore level size gradients

in intertidal mollusks. Ecology, 53, 693–700.

Vinagre, C., Leal, I., Mendonça, V., Madeira, D., Narciso,

L., Diniz, M. S. & Flores, A. A. V. 2015. Vulnerability

to climate warming and acclimation capacity of

tropical and temperate coastal organisms. Ecological

Indicators, 62, 317-327. DOI: https://doi.org/10.1016/j.

ecolind.2015.11.010

Vinagre, C., Leal, I., Mendonça, V., Cereja, R., AbreuAfonso, F., Dias, R., Mizrahi, D. & Flores, A. A. V.

Ecological traps in shallow coastal waters -

Potential effect of heat-waves in tropical and temperate

organisms. Plos one, 13, e0192700. DOI: https://doi.

org/10.1371/journal.pone.0192700

Wernberg, T., Smale, D. A. & Thomsen, M. S. 2012.

A decade of climate change experiments on marine

organisms: procedures, patterns and problems. Global

Change Biology, 18, 1491-1498. DOI: https://doi.

org/10.1111/j.1365-2486.2012.02656.x

Wetz, M. S. & Yoskowitz, D. W. 2013. An ‘extreme’ future

for estuaries? Effects of extreme climatic events on

estuarine water quality and ecology. Marine Pollution

Bulletin, 69, 7-18. DOI: https://doi.org/10.1016/j.

marpolbul.2013.01.020

Zajac, R., Kelly, E., Perry, D. & Espinosa, I. 2017. Population

ecology of the snail Melampus bidentatus in changing

salt marsh landscapes. Marine Ecology, 38, 1-17. DOI:

https://doi.org/10.1111/maec.12420

Downloads

Published

2024-06-11

Issue

Section

Original Article

How to Cite

The effect of extreme climatic events on littorinid snails in two estuarine environments, temperate (NW Spain) and tropical (NE Brazil). (2024). Ocean and Coastal Research, 72(Suppl. 1). https://doi.org/10.1590/