Contributions of rising mean river level of the Río de la Plata estuary on recorded changes in positive storm surges
DOI:
https://doi.org/10.1590/Keywords:
Positive storm surges, Sudestadas, Annual mean river level, Climate change, Global warmingAbstract
A 117-year series of hourly-observed heights in the Río de la Plata estuary allows studying the recorded
changes in positive storm surge (PSS) events spanning from 1905 to 2021, and calculate the annual mean
river level (AMRL) trend. The analysis of PSS focuses on the trend of the annual number of events, the annual
mean events duration, and the annual maximum PSS height. Seasonal analyses of these variables can also be
conducted. This study aimed to ascertain any correlation between the rising AMRL and the evolution of PSS.
Since AMRL increase is related to the effects of global warming, the observation series is divided into two
periods based on the behavior of the curve of greenhouse gas emissions into the atmosphere. One period
covers 1905 to 1962 and is characterized by a less pronounced curve slope, while the other period,
1965 to 2021, exhibits a drastically steeper curve slope. Moreover, two sets of data were obtained to calculate
the PSS in two different scenarios for both periods: a hypothetical one, with no trend in AMRL, and a realistic
one, maintaining the observed AMRL trend. The results show the acceleration trend of two of the analyzed
variables, namely the annual number of events and the average duration of events, when transitioning from one
period to the other (following the behavior observed in AMRL). However, the increase in AMRL could not be
the only explanation of these accelerations. On the one hand, although the accelerations decrease when the
hypothetical scenario is considered, they do not totally disappear. Moreover, the annual average duration of the
events increases follows the realistic scenario when removing AMRL trend. On the other hand, the maximum
height of PSS shows no trend in either period and remains unaffected comparing the two scenarios.
References
Alsaaq, F., Kuhn, M., El-Mowafy, A. & Kennedy, P.
Filtering methods to extract the tide height
from Global Navigation Satellite Systems (GNSS)
signals for Hydrographic applications. In Proceedings
HYDRO 2016. Rostock-Warnemünde: DHYG.
Available from: http://hdl.handle.net/20.500.11937/
Access date: Dec. 21, 2023
Arns A., Wahl, T., Dangendorf, S., Jensen, & Pattiaratchi, C.
Sea-level rise induced amplification of coastal
protection design heights. Scientific Report, 7, 40171.
DOI: https://doi.org/10.1038/srep40171
Cartwright, D. E. 1985. Tidal prediction and modern time
scales. International Hydrographic Review, LXII(1),
–138.
D’onofrio, E., Fiore, M.M.E. & Romero, S. 1999. Return
periods of extreme water levels estimated for some
vulnerable areas of Buenos Aires. Continental Shelf
Research, 19, 1681–1693.
Changes in storm surges due to the rising mean river level
Ocean and Coastal Research 2024, v72:e24055 14
de Azkue and D’Onofrio
D’onofrio, E. E., Fiore, M. E. & Pousa, J. L. 2008. Changes in
the regime of storm surges in Buenos Aires, Argentina.
Journal of Coastal Research, 24(1A), 260–265.
D’onofrio, E. E., Oreiro, F. A., Grismeyer, W. H., &
Fiore, M. M. E. 2016. Predicciones precisas de
marea astronómica calculadas a partir de altimetría
satelital y observaciones costeras para la zona de
Isla Grande de Tierra del Fuego, Islas de los Estados
y Canal de Beagle. GEOACTA, 40(2), 60–75.
D’onofrio, E. E., Oreiro, F. & Fiore, M. E. 2012. Simplified
empirical astronomical tide model: an application for
the Río de la Plata estuary. Computational
Geosciences, 44, 196–202. DOI: https://doi.org/
1016/j.cageo.2011.09.019
De Azkue, M. F. & Fiore, M. M. E. 2021. Análisis de la
tendencia relativa del nivel medio del Río de la Plata
entre 1905 y 2020. Terra Mundus, 8(1), 1-12.
De Dominicis, M., Wolf, J., Jevrejeva, S., Zheng, P. & Hu, Z.
Future interactions between sea level rise, tides,
and storm surges in the world’s largest urban area.
Geophysical Research Letters, 47(4), e2020GL087002.
Dennis, K.C., Schnack, E. J., Mouzo, F. H. & Orona, C. R.
Sea level rise and Argentina: potential impacts
and consequences. Journal of Coastal Research,
, 205–223.
Dinápoli, M.G., Simionato, C.G. & Moreira, D. 2017. Model
sensitivity for the prediction of extreme sea level events
at a wide and fast-flowing estuary: the case of the
Río de la Plata. Natural Hazards and Earth System
Sciences Discussions, preprint. DOI: https://doi.org/
5194/nhess-2016-393
Dirección Nacional de Control de Puertos y Vías
Navegables. 2022, 19 de octubre. Boletín Fluvial.
Buenos Aires. Available from: https://www.argentina.
gob.ar/sites/default/files/2018/04/boletin_fluvial_
_22.pdf, accessed on 21/12/2023
Escobar, G., Vargas, W. & Bischoff, S. 2004. Wind tides in
the Rio de la Plata estuary: meteorological conditions.
International Journal of Climatology: A Journal of the
Royal Meteorological Society, 24(9), 1159–1169.
Fox-Kemper, B., Hewitt, H. T., Xiao, C.,
Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L.,
Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G.,
Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L.,
Sallée, J.-B., Slangen, A. B. A. & Yu, Y. 2021. Ocean,
cryosphere and sea level change. In: MassonDelmotte, V., Zhai, Pirani A., Connors. S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I.,
Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfeld, T., Yelekçi, O., Yu, R. &
Zhou, B. (eds). Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental
Panel on Climate Change. (pp. 1211–1362).
Cambridge: Cambridge University Press. DOI:
https://doi.org/10.1017/9781009157896.011
Frederikse, T., Adhikari, S., Daley, T. J., Dangendorf, S.,
Gehrels, R., Landerer, F., Marcos, M., Newton, T. L.,
Rush, G., Slangen, A. B. A., & Wöppelmann, G. 2021.
Constraining 20th-century sea level rise in the South
Atlantic Ocean. Journal of Geophysical ResearchOceans, 126(3), e2020JC016970. DOI: https://doi.org/
1029/2020JC016970.
Gan, A. P. & Rao, B. V. 1991. Surface cyclogenesis
over South America. Monthly Weather Review, 119,
–1302. DOI: https://doi.org/10.1175/1520-0493
(1991)119<1293:SCOSA>2.0.CO;2
Haigh, I. D., Eliot, M. & Pattiaratchi, C. 2011. Global
influences of the 18.61 year nodal cycle and 8.85 year
cycle of lunar perigee on high tidal levels. Journal
of Geophysical Research, Oceans, 116(C6). DOI:
https://doi.org/10.1029/2010JC006645
Idier, D., Bertin, X., Thompson, P. & Pickering, M. D. 2019.
Interactions between mean sea level, tide, surge,
waves and flooding: mechanisms and contributions to
sea level variations at the coast. Survey Geophysics,
, 1603– 1630. DOI: https://doi.org/10.1007/s10712-
-09549-5
Kron, W. 2013. Coasts: the high-risk areas of the
world. Natural Hazards, 66, 1363–1382. DOI:
https://doi.org/10.1007/s11069-012-0215-4
Laignel, B., Vignudelli, S., Almar, R., Becker, M.,
Bentamy A., Beneviste, J., Birol, F., Frappart, F., Idier, D.,
Salameh, E., Passaro, M., Menende, M., Simard, M.,
Turki, E. I. & Verpoorter, C. 2023. Observation of
the coastal areas, estuaries and deltas from space.
Surveys in Geophysics, 44, 1309–1356. DOI:
https://doi.org/10.1007/s10712-022-09757-6
Lycourghiotis, S. & Kontoni, D.-P. 2012. Analyzing the
Flood Risk in Mediterranean Coastal Areas with a New
Methodology. In: 5th International Conference from
Scientific Computing to Computational Engineering,
Athens (pp. 4-7).
Lopez, M. I. 2023. Obtención de planos de reducción de
sondajes en el Mar Argentino para cartas náuticas
a partir de datos mareográficos y constantes
armónicas del Centro de estudios Topográficos del
Océano y la Hidrósfera (Tesina de Licenciatura en
Cartografía). Escuela de Ciencias del Mar, Facultad
de la Armada, Universidad de la Defensa Nacional,
Buenos Aires. Available from: https://cefadigital.edu.ar/
handle/1847939/2447. Access date: Dec 21, 2023
Luo J., Ying K. & Bai J. 2005. Savitzky–Golay
smoothing and differentiation filter for even number
data. Signal Processing, 85(7), 1429–1434. DOI:
https://doi.org/10.1016/j.sigpro.2005.02.002
Luz Clara, M., Simionato, C. G., D’onofrio, E., Fiore, M. &
Moreira, D. 2014. Variability of tidal constants in the Río
de la Plata estuary associated to the natural cycles of
the runoff. Estuarine, Coastal and Shelf Science, 148,
-96. DOI: https://doi.org/10.1016/j.ecss.2014.07.002
Moreira, D., Briche, E., Falco, M., Robledo, F. A., Murgida, A.,
Cad, M., Partucci, H.B., Gatti, I., Duville, M., Re, M.,
Lecertua, E., Kazimierski, L. D., Etala, P., Campetella, C.,
Ruiz, J., Vera, C., Saulo, A. C., Simionato, C. G.,
Saraceno, M., Clara, M. L., D’Onofrio, E., Dragani, W.,
Bertolotti, M., Saucedo, M. & Vidal, R. 2014. “Anticipando
la Crecida”. Tools for the contribution in risk and
disaster management due o southeasterly winds
and precipitation floods in “La Ribera” district,
Buenos Aires province, Argentina. In: Colloque
international “Connaissance et compréhension
des risques côtiers” (pp. 244-251). Available from:
https://www.researchgate.net/publication/271848012.
Access date: Dec 21, 2023
Changes in storm surges due to the rising mean river level
Ocean and Coastal Research 2024, v72:e24055 15
de Azkue and D’Onofrio
Moreira, D. & Simionato, C.G. 2019. Modeling the
suspended sediment transport in a very wide,
shallow, and microtidal estuary, the Rıo de la Plata,
Argentina. Journal of Advances in Modeling Earth
Systems, 11(10), 3284–3304. DOI: https://doi.org/
1029/2018MS001605
Nabel, P.E. Caretti, M. & Becerra Serial, R. 2008.
Incidencia de aspectos naturales y antrópicos en los
anegamientos de la ciudad de Buenos Aires. Revista
Museo Argentino de Ciencias Naturales, 10(1), 37–53.
Peng, D., Hill, E. M., Meltzner, A. J. & Switzer, A. D. 2019.
Tide gauge records show that the 18.61-year nodal
tidal cycle can change high water levels by up to 30 cm.
Journal of Geophysical Research, Oceans, 124(1),
–749. DOI: https://doi.org/10.1029/2018JC014695
Piecuch, C. G. 2023. River effects on sea-level rise in the
Río de la Plata estuary during the past century. Ocean
Science, 19(1), 57–75. DOI: https://doi.org/10.5194/
os-19-57-2023
Re, M. & Menéndez, A. N. 2006. Impacto del cambio
climático en las costas del Río de la Plata. Revista
Internacional de Desastres Naturales, Accidentes e
Infraestructura Civil, 7(1), 25.
Santamaria-Aguilar, S., Schuerch, M., Vafeidis, A. &
Carretero, S. C. 2017. Long-Term Trends and Variability
of Water Levels and Tides in Buenos Aires and Mar del
Plata, Argentina. Frontiers in Marine Science: Coastal
Ocean Processes, 4. DOI: https://doi.org/10.3389/
fmars.2017.00380
Santoro, P. E., Fossati, M. & Piedra-Cueva, I. 2013.
Study of the meteorological tide in the Río de la Plata.
Continental Shelf Research, 60, 51–63.
Savitzky, A. & Golay, M. J. E. 1964. Smoothing and
differentiation of data by simplified least-squares
procedures. Analytical Chemistry, 36(8), 1627–1639.
DOI: https://doi.org/10.1021/ac60214a047
Simionato, C.G., Dragani, W.C., Meccia, V. L & Nuñez, M. N.
A numerical study of the barotropic circulation of
the Rio de la Plata Estuary: sensitivity to bathymetry,
the earth’s rotation and low frequency wind variability.
Estuarine, Coastal and Shelf Science, 61(2), 261–273.
Simionato, C. G., Meccia, V. L., Dragani, W. C.,
Guerrero, R. & Nuñez M. N. 2006. Rıo de la Plata
estuary response to wind variability in synoptic to
intraseasonal scales: Barotropic response. Journal
of Geophysical Research: Oceans, 111(C9).
DOI: https://doi.org/10.1029/2005JC003297
Stoddard, I., Anderson, K., Capstick, S.,
Carton, W., Depledge, J., Facer, K., Gough, C.,
Hache, F., Hoolohan, C., Hultman, M., Hällström, N.,
Kartha, S., Klinsky, S., Kuchler, M., Lövbrand, E.,
Nasiritousi, N., Newell, P., Peters, G. P., Sokona, Y.
Stirling, A., Stilwell, M., Spash, C. L. & Williams, M.
Three decades of climate mitigation: why haven’t
we bent the global emissions curve? Annual Review
of Environment and Resources, 46(1), 653-689. DOI:
https://doi.org/10.1146/annurev-environ-012220-011104
Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N.,
Eroksom, L. & Storlazzi C. D. 2017. Doubling of coastal
flooding frequency within decades due to sea-level rise.
Scientific Reports, 7, 1399. DOI: https://doi.org/10.1038/
s41598-017-01362-7
Wood, M., Haigh, I. D., Quan Quan, L., Hung, N. N.,
Hoang T. B., Darby, S. E., Marsh, R., Skliris, N.,
Hirschi, J. J., Nicholls, R. J. & Bloemendaal, N. 2022.
Climate-induced storminess forces major increases
in future storm surge hazard in the South China Sea
region. Natural Hazards and Earth System Sciences,
(7), 2475-2504. DOI: https://doi.org/10.5194/
nhess-23-2475-2023
Zhang, K., Li, Y., Liu, H., Xu, H., & Shen, J. 2013. Comparison
of three methods for estimating the sea level rise effect on
storm surge flooding. Climatic Change, 118(2), 487-500.