Contributions of rising mean river level of the Río de la Plata estuary on recorded changes in positive storm surges

Authors

  • M. Florencia de Azkue
  • Enrique E. D’Onofrio

DOI:

https://doi.org/10.1590/

Keywords:

Positive storm surges, Sudestadas, Annual mean river level, Climate change, Global warming

Abstract

A 117-year series of hourly-observed heights in the Río de la Plata estuary allows studying the recorded
changes in positive storm surge (PSS) events spanning from 1905 to 2021, and calculate the annual mean
river level (AMRL) trend. The analysis of PSS focuses on the trend of the annual number of events, the annual
mean events duration, and the annual maximum PSS height. Seasonal analyses of these variables can also be
conducted. This study aimed to ascertain any correlation between the rising AMRL and the evolution of PSS.
Since AMRL increase is related to the effects of global warming, the observation series is divided into two
periods based on the behavior of the curve of greenhouse gas emissions into the atmosphere. One period
covers 1905 to 1962 and is characterized by a less pronounced curve slope, while the other period,
1965 to 2021, exhibits a drastically steeper curve slope. Moreover, two sets of data were obtained to calculate
the PSS in two different scenarios for both periods: a hypothetical one, with no trend in AMRL, and a realistic
one, maintaining the observed AMRL trend. The results show the acceleration trend of two of the analyzed
variables, namely the annual number of events and the average duration of events, when transitioning from one
period to the other (following the behavior observed in AMRL). However, the increase in AMRL could not be
the only explanation of these accelerations. On the one hand, although the accelerations decrease when the
hypothetical scenario is considered, they do not totally disappear. Moreover, the annual average duration of the
events increases follows the realistic scenario when removing AMRL trend. On the other hand, the maximum
height of PSS shows no trend in either period and remains unaffected comparing the two scenarios.

References

Alsaaq, F., Kuhn, M., El-Mowafy, A. & Kennedy, P.

Filtering methods to extract the tide height

from Global Navigation Satellite Systems (GNSS)

signals for Hydrographic applications. In Proceedings

HYDRO 2016. Rostock-Warnemünde: DHYG.

Available from: http://hdl.handle.net/20.500.11937/

Access date: Dec. 21, 2023

Arns A., Wahl, T., Dangendorf, S., Jensen, & Pattiaratchi, C.

Sea-level rise induced amplification of coastal

protection design heights. Scientific Report, 7, 40171.

DOI: https://doi.org/10.1038/srep40171

Cartwright, D. E. 1985. Tidal prediction and modern time

scales. International Hydrographic Review, LXII(1),

–138.

D’onofrio, E., Fiore, M.M.E. & Romero, S. 1999. Return

periods of extreme water levels estimated for some

vulnerable areas of Buenos Aires. Continental Shelf

Research, 19, 1681–1693.

Changes in storm surges due to the rising mean river level

Ocean and Coastal Research 2024, v72:e24055 14

de Azkue and D’Onofrio

D’onofrio, E. E., Fiore, M. E. & Pousa, J. L. 2008. Changes in

the regime of storm surges in Buenos Aires, Argentina.

Journal of Coastal Research, 24(1A), 260–265.

D’onofrio, E. E., Oreiro, F. A., Grismeyer, W. H., &

Fiore, M. M. E. 2016. Predicciones precisas de

marea astronómica calculadas a partir de altimetría

satelital y observaciones costeras para la zona de

Isla Grande de Tierra del Fuego, Islas de los Estados

y Canal de Beagle. GEOACTA, 40(2), 60–75.

D’onofrio, E. E., Oreiro, F. & Fiore, M. E. 2012. Simplified

empirical astronomical tide model: an application for

the Río de la Plata estuary. Computational

Geosciences, 44, 196–202. DOI: https://doi.org/

1016/j.cageo.2011.09.019

De Azkue, M. F. & Fiore, M. M. E. 2021. Análisis de la

tendencia relativa del nivel medio del Río de la Plata

entre 1905 y 2020. Terra Mundus, 8(1), 1-12.

De Dominicis, M., Wolf, J., Jevrejeva, S., Zheng, P. & Hu, Z.

Future interactions between sea level rise, tides,

and storm surges in the world’s largest urban area.

Geophysical Research Letters, 47(4), e2020GL087002.

Dennis, K.C., Schnack, E. J., Mouzo, F. H. & Orona, C. R.

Sea level rise and Argentina: potential impacts

and consequences. Journal of Coastal Research,

, 205–223.

Dinápoli, M.G., Simionato, C.G. & Moreira, D. 2017. Model

sensitivity for the prediction of extreme sea level events

at a wide and fast-flowing estuary: the case of the

Río de la Plata. Natural Hazards and Earth System

Sciences Discussions, preprint. DOI: https://doi.org/

5194/nhess-2016-393

Dirección Nacional de Control de Puertos y Vías

Navegables. 2022, 19 de octubre. Boletín Fluvial.

Buenos Aires. Available from: https://www.argentina.

gob.ar/sites/default/files/2018/04/boletin_fluvial_

_22.pdf, accessed on 21/12/2023

Escobar, G., Vargas, W. & Bischoff, S. 2004. Wind tides in

the Rio de la Plata estuary: meteorological conditions.

International Journal of Climatology: A Journal of the

Royal Meteorological Society, 24(9), 1159–1169.

Fox-Kemper, B., Hewitt, H. T., Xiao, C.,

Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L.,

Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G.,

Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L.,

Sallée, J.-B., Slangen, A. B. A. & Yu, Y. 2021. Ocean,

cryosphere and sea level change. In: MassonDelmotte, V., Zhai, Pirani A., Connors. S. L., Péan, C.,

Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I.,

Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,

Maycock, T. K., Waterfeld, T., Yelekçi, O., Yu, R. &

Zhou, B. (eds). Climate Change 2021: The Physical

Science Basis. Contribution of Working Group I to the

Sixth Assessment Report of the Intergovernmental

Panel on Climate Change. (pp. 1211–1362).

Cambridge: Cambridge University Press. DOI:

https://doi.org/10.1017/9781009157896.011

Frederikse, T., Adhikari, S., Daley, T. J., Dangendorf, S.,

Gehrels, R., Landerer, F., Marcos, M., Newton, T. L.,

Rush, G., Slangen, A. B. A., & Wöppelmann, G. 2021.

Constraining 20th-century sea level rise in the South

Atlantic Ocean. Journal of Geophysical ResearchOceans, 126(3), e2020JC016970. DOI: https://doi.org/

1029/2020JC016970.

Gan, A. P. & Rao, B. V. 1991. Surface cyclogenesis

over South America. Monthly Weather Review, 119,

–1302. DOI: https://doi.org/10.1175/1520-0493

(1991)119<1293:SCOSA>2.0.CO;2

Haigh, I. D., Eliot, M. & Pattiaratchi, C. 2011. Global

influences of the 18.61 year nodal cycle and 8.85 year

cycle of lunar perigee on high tidal levels. Journal

of Geophysical Research, Oceans, 116(C6). DOI:

https://doi.org/10.1029/2010JC006645

Idier, D., Bertin, X., Thompson, P. & Pickering, M. D. 2019.

Interactions between mean sea level, tide, surge,

waves and flooding: mechanisms and contributions to

sea level variations at the coast. Survey Geophysics,

, 1603– 1630. DOI: https://doi.org/10.1007/s10712-

-09549-5

Kron, W. 2013. Coasts: the high-risk areas of the

world. Natural Hazards, 66, 1363–1382. DOI:

https://doi.org/10.1007/s11069-012-0215-4

Laignel, B., Vignudelli, S., Almar, R., Becker, M.,

Bentamy A., Beneviste, J., Birol, F., Frappart, F., Idier, D.,

Salameh, E., Passaro, M., Menende, M., Simard, M.,

Turki, E. I. & Verpoorter, C. 2023. Observation of

the coastal areas, estuaries and deltas from space.

Surveys in Geophysics, 44, 1309–1356. DOI:

https://doi.org/10.1007/s10712-022-09757-6

Lycourghiotis, S. & Kontoni, D.-P. 2012. Analyzing the

Flood Risk in Mediterranean Coastal Areas with a New

Methodology. In: 5th International Conference from

Scientific Computing to Computational Engineering,

Athens (pp. 4-7).

Lopez, M. I. 2023. Obtención de planos de reducción de

sondajes en el Mar Argentino para cartas náuticas

a partir de datos mareográficos y constantes

armónicas del Centro de estudios Topográficos del

Océano y la Hidrósfera (Tesina de Licenciatura en

Cartografía). Escuela de Ciencias del Mar, Facultad

de la Armada, Universidad de la Defensa Nacional,

Buenos Aires. Available from: https://cefadigital.edu.ar/

handle/1847939/2447. Access date: Dec 21, 2023

Luo J., Ying K. & Bai J. 2005. Savitzky–Golay

smoothing and differentiation filter for even number

data. Signal Processing, 85(7), 1429–1434. DOI:

https://doi.org/10.1016/j.sigpro.2005.02.002

Luz Clara, M., Simionato, C. G., D’onofrio, E., Fiore, M. &

Moreira, D. 2014. Variability of tidal constants in the Río

de la Plata estuary associated to the natural cycles of

the runoff. Estuarine, Coastal and Shelf Science, 148,

-96. DOI: https://doi.org/10.1016/j.ecss.2014.07.002

Moreira, D., Briche, E., Falco, M., Robledo, F. A., Murgida, A.,

Cad, M., Partucci, H.B., Gatti, I., Duville, M., Re, M.,

Lecertua, E., Kazimierski, L. D., Etala, P., Campetella, C.,

Ruiz, J., Vera, C., Saulo, A. C., Simionato, C. G.,

Saraceno, M., Clara, M. L., D’Onofrio, E., Dragani, W.,

Bertolotti, M., Saucedo, M. & Vidal, R. 2014. “Anticipando

la Crecida”. Tools for the contribution in risk and

disaster management due o southeasterly winds

and precipitation floods in “La Ribera” district,

Buenos Aires province, Argentina. In: Colloque

international “Connaissance et compréhension

des risques côtiers” (pp. 244-251). Available from:

https://www.researchgate.net/publication/271848012.

Access date: Dec 21, 2023

Changes in storm surges due to the rising mean river level

Ocean and Coastal Research 2024, v72:e24055 15

de Azkue and D’Onofrio

Moreira, D. & Simionato, C.G. 2019. Modeling the

suspended sediment transport in a very wide,

shallow, and microtidal estuary, the Rıo de la Plata,

Argentina. Journal of Advances in Modeling Earth

Systems, 11(10), 3284–3304. DOI: https://doi.org/

1029/2018MS001605

Nabel, P.E. Caretti, M. & Becerra Serial, R. 2008.

Incidencia de aspectos naturales y antrópicos en los

anegamientos de la ciudad de Buenos Aires. Revista

Museo Argentino de Ciencias Naturales, 10(1), 37–53.

Peng, D., Hill, E. M., Meltzner, A. J. & Switzer, A. D. 2019.

Tide gauge records show that the 18.61-year nodal

tidal cycle can change high water levels by up to 30 cm.

Journal of Geophysical Research, Oceans, 124(1),

–749. DOI: https://doi.org/10.1029/2018JC014695

Piecuch, C. G. 2023. River effects on sea-level rise in the

Río de la Plata estuary during the past century. Ocean

Science, 19(1), 57–75. DOI: https://doi.org/10.5194/

os-19-57-2023

Re, M. & Menéndez, A. N. 2006. Impacto del cambio

climático en las costas del Río de la Plata. Revista

Internacional de Desastres Naturales, Accidentes e

Infraestructura Civil, 7(1), 25.

Santamaria-Aguilar, S., Schuerch, M., Vafeidis, A. &

Carretero, S. C. 2017. Long-Term Trends and Variability

of Water Levels and Tides in Buenos Aires and Mar del

Plata, Argentina. Frontiers in Marine Science: Coastal

Ocean Processes, 4. DOI: https://doi.org/10.3389/

fmars.2017.00380

Santoro, P. E., Fossati, M. & Piedra-Cueva, I. 2013.

Study of the meteorological tide in the Río de la Plata.

Continental Shelf Research, 60, 51–63.

Savitzky, A. & Golay, M. J. E. 1964. Smoothing and

differentiation of data by simplified least-squares

procedures. Analytical Chemistry, 36(8), 1627–1639.

DOI: https://doi.org/10.1021/ac60214a047

Simionato, C.G., Dragani, W.C., Meccia, V. L & Nuñez, M. N.

A numerical study of the barotropic circulation of

the Rio de la Plata Estuary: sensitivity to bathymetry,

the earth’s rotation and low frequency wind variability.

Estuarine, Coastal and Shelf Science, 61(2), 261–273.

Simionato, C. G., Meccia, V. L., Dragani, W. C.,

Guerrero, R. & Nuñez M. N. 2006. Rıo de la Plata

estuary response to wind variability in synoptic to

intraseasonal scales: Barotropic response. Journal

of Geophysical Research: Oceans, 111(C9).

DOI: https://doi.org/10.1029/2005JC003297

Stoddard, I., Anderson, K., Capstick, S.,

Carton, W., Depledge, J., Facer, K., Gough, C.,

Hache, F., Hoolohan, C., Hultman, M., Hällström, N.,

Kartha, S., Klinsky, S., Kuchler, M., Lövbrand, E.,

Nasiritousi, N., Newell, P., Peters, G. P., Sokona, Y.

Stirling, A., Stilwell, M., Spash, C. L. & Williams, M.

Three decades of climate mitigation: why haven’t

we bent the global emissions curve? Annual Review

of Environment and Resources, 46(1), 653-689. DOI:

https://doi.org/10.1146/annurev-environ-012220-011104

Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N.,

Eroksom, L. & Storlazzi C. D. 2017. Doubling of coastal

flooding frequency within decades due to sea-level rise.

Scientific Reports, 7, 1399. DOI: https://doi.org/10.1038/

s41598-017-01362-7

Wood, M., Haigh, I. D., Quan Quan, L., Hung, N. N.,

Hoang T. B., Darby, S. E., Marsh, R., Skliris, N.,

Hirschi, J. J., Nicholls, R. J. & Bloemendaal, N. 2022.

Climate-induced storminess forces major increases

in future storm surge hazard in the South China Sea

region. Natural Hazards and Earth System Sciences,

(7), 2475-2504. DOI: https://doi.org/10.5194/

nhess-23-2475-2023

Zhang, K., Li, Y., Liu, H., Xu, H., & Shen, J. 2013. Comparison

of three methods for estimating the sea level rise effect on

storm surge flooding. Climatic Change, 118(2), 487-500.

Downloads

Published

04.10.2024

How to Cite

Contributions of rising mean river level of the Río de la Plata estuary on recorded changes in positive storm surges. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/