Identifying the origins of nanoplastics in the abyssal South Atlantic using backtracking Lagrangian simulations with fragmentation
DOI:
https://doi.org/10.1590/Keywords:
Nanoplastics, Lagrangian, Fragmentation, Transport, OceanAbstract
During an expedition in January 2019, nanoplastics were sampled at a depth of −5,170 m over Cape Basin,
in the South Atlantic Ocean. Using photo-induced force microscopy, it was suggested that these were
polyethylene terephthalate (PET-like) particles with various sizes down to 100 nm, at different stages of
degradation. By using a state-of-the-art Lagrangian 3D model, which includes fragmentation, we backtracked
virtual particles to map the origin of the PET nanoplastics sampled at this location. Fragmentation processes
are crucial to understanding the origin of nanoplastics (and microplastics) because they allow for detecting
when and where particles become so small that they transition to a colloidal state, in which the buoyant
force becomes negligible. We found that it is very unlikely that the nanoplastic particles entered the ocean
as nanoplastics and then drifted to the sampling location. We also found that the fragmentation scheme,
particularly the fragmentation timescale prescribed to the modeled particles, affects how they drift in the
ocean by the velocity with which they sink. This study contributes to understanding the fate and sources of
nanoplastics in the deep ocean and the development of 3D backtracking simulations for source attribution
of ocean plastic.
References
Al Harraq, A. & Bharti, B. 2022. Microplastics through
the Lens of Colloid Science. ACS Environmental
Au, 2(1), 3–10. DOI: https://doi.org/10.1021/
acsenvironau.1c00016
Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji,
N. 2018. Microplastics and Nanoplastics in Aquatic
Environments: Aggregation, Deposition, and Enhanced
Contaminant Transport. Environmental Science &
Technology, 52(4), 1704–1724. DOI: https://doi.
org/10.1021/acs.est.7b05559
Bakir, A., Rowland, S. J. & Thompson, R. C. 2014. Transport
of persistent organic pollutants by microplastics in
estuarine conditions. Estuarine, Coastal and Shelf
Science, 140, 14–21. DOI: https://doi.org/10.1016/j.
ecss.2014.01.004
Bond, T., Ferrandiz-Mas, V., Felipe-Sotelo, M. & Van
Sebille, E. 2018. The occurrence and degradation of
aquatic plastic litter based on polymer physicochemical
properties: A review. Critical Reviews in Environmental
Science and Technology, 48(7-9), 685–722. DOI:
https://doi.org/10.1080/10643389.2018.1483155
Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & CanningClode, J. 2016. Microplastics as vector for heavy metal
contamination from the marine environment. Estuarine,
Coastal and Shelf Science, 178, 189–195. DOI: https://
doi.org/10.1016/j.ecss.2015.12.003
Canals, M., Pham, C. K., Bergmann, M., Gutow, L., Hanke,
G., Sebille, E. V., Angio-Lillo, M., Buhl-Mortensen, L.,
Cau, A., Ioakeimidis, C., Kammann, U., Lundsten,
L., Papatheodorou, G., Purser, A., Sanchez-Vidal,
A., Schulz, M., Vinci, M., Chiba, S., Galgani, F.,
Langenkämper, D., Möller, T., Nattkemper, T. W.,
Ruiz, M., Suikkanen, S., Woodall, L., Fakiris, E., Jack,
M. E. M. & Giorgetti, A. 2021. The quest for seafloor
macrolitter: a critical review of background knowledge,
current methods and future prospects. Environmental
Research Letters, 16(2), 023001. DOI: https://dx.doi.
org/10.1088/1748-9326/abc6d4
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T.,
Jang, J. H., Abu-Omar, M., Scott, S. L. & Suh, S. 2020.
Degradation Rates of Plastics in the Environment. ACS
Sustainable Chemistry & Engineering, 8(9), 3494–3511.
DOI: https://doi.org/10.1021/acssuschemeng.9b06635
Chiba, S., Saito, H., Fletcher, R., Yogi, T., Kayo, M., Miyagi,
S., Ogido, M. & Fujikura, K. 2018. Human footprint
in the abyss: 30 year records of deep-sea plastic
debris. Marine Policy, 96, 204–212. DOI: https://doi.
org/10.1016/j.marpol.2018.03.022
de la Fuente, R., Drótos, G., Hernández-García, E., López,
C. & Van Sebille, E. 2021. Sinking microplastics in
the water column: simulations in the Mediterranean
Sea. Ocean Science, 17(2), 431–453. DOI: https://doi.
org/10.5194/os-17-431-2021
Delandmeter, P. & Van Sebille, E. 2019. The Parcels v2.0
Lagrangian framework: new field interpolation schemes.
Geoscientific Model Development, 12(8), 3571–3584.
DOI: https://doi.org/10.5194/gmd-12-3571-2019
Delre, A., Goudriaan, M., Morales, V. H., Vaksmaa, A.,
Ndhlovu, R. T., Baas, M., Keijzer, E., De Groot, T.,
Zeghal, E., Egger, M., Röckmann, T., Niemann, H.
Plastic photodegradation under simulated marine
conditions. Marine Pollution Bulletin, 187, 114544. DOI:
https://doi.org/10.1016/j.marpolbul.2022.114544
Denes, M. C., Froyland, G. & Keating, S. R. 2022.
Persistence and material coherence of a mesoscale
ocean eddy. Physical Review Fluids, 7(3), 034501.
DeVries, T. & Primeau, F. 2011. Dynamically and
Observationally Constrained Estimates of Water-Mass
Distributions and Ages in the Global Ocean. Journal
of Physical Oceanography, 41(12), 2381–2401. DOI:
https://doi.org/10.1175/JPO-D-10-05011.1
Egger, M., Sulu-Gambari, F. & Lebreton, L. 2020. First
evidence of plastic fallout from the North Pacific
Garbage Patch. Scientific Reports, 10(1): 7495. DOI:
https://doi.org/10.1038/s41598-020-64465-8
Einstein, A. 1956. Investigation on the Theory of Brownian
Movement edited by R. Furth. New York, Dover.
European Comission. 2023. Nanoplastics: state of
knowledge and environmental and human health impacts.
Luxembourg, Publications Off
Geyer, R. 2020. A Brief History of Plastics. In: StreitBianchi, M, Cimadevila, M. & Trettnak, W. (eds.).
Mare Plasticum - The Plastic Sea: Combatting Plastic
Pollution Through Science and Art (pp. 31–47). Cham:
Springer International Publishing.
Gigault, J., El Hadri, H., Nguyen, B., Grassl, B., Rowenczyk,
L., Tufenkji, N., Feng, S. & Wiesner, M. 2021.
Nanoplastics are neither microplastics nor engineered
nanoparticles. Nature Nanotechnology, 16(5), 501–507.
Number: 5 Publisher: Nature Publishing Group. DOI:
https://doi.org/10.1038/s41565-021-00886-4
Hartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv,
M., Verschoor, A., Dau-Gaard, A. E., Rist, S., Karlsson,
Backtracking abyssal nanoplastics
Ocean and Coastal Research 2024, v72:e24043 15
Pierard et al.
T., Brennholt, N., Cole, M., Herrling, M. P., Hess, M.
C., Ivleva, N. P., Lusher, A. L. & Wagner, M. 2019. Are
We Speaking the Same Language? Recommendations
for a Definition and Categorization Framework for
Plastic Debris. Environmental Science & Technology,
(3), 1039–1047. DOI: https://doi.org/10.1021/acs.
est.8b05297
Haza, A. C., Özgökmen, T. M., Griffa, A., Garraffo, Z. D. &
Piterbarg, L. 2012. Parameterization of particle transport
at submesoscales in the gulf stream region using
lagrangian subgridscale models. Ocean Modelling, 42,
–49.
Ioakeimidis, C., Fotopoulou, K. N., Karapanagioti, H. K.,
Geraga, M., Zeri, C., Papathanassiou, E., Galgani, F.
& Papatheodorou, G. 2016. The degradation potential
of PET bottles in the marine environment: An ATR-FTIR
based approach. Scientific Reports, 6(1): 23501. https://
doi.org/10.1038/srep23501
Kaandorp, M. L. A., Dijkstra, H. A. & Sebille, E. V. 2021.
Modelling size distributions of marine plastics under
the influence of continuous cascading fragmentation.
Environmental Research Letters, 16(5), 054075. DOI:
https://dx.doi.org/10.1088/1748-9326/abe9ea
Kholodenko, A. L. & Douglas, J. F. 1995. Generalized
Stokes-Einstein equation for spherical particle
suspensions. Physical Review E, 51(2), 1081–1090.
DOI: https://doi.org/10.1103/PhysRevE.51.1081
Lambert, S. & Wagner, M. 2016. Formation of microscopic
particles during the degradation of different polymers.
Chemosphere, 161, 510–517. DOI: https://doi.
org/10.1016/j.chemosphere.2016.07.042
Lee, H., Shim, W. J. & Kwon, J.-H. 2014. Sorption capacity
of plastic debris for hydrophobic organic chemicals.
Science of The Total Environment, 470-471: 1545–1552.
DOI: https://doi.org/10.1016/j.scitotenv.2013.08.023
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud,
C., Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E.,
Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham,
T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T.,
Martin, N., Masson, S., Mocavero, S., Paul, J., Ousset,
C., Storkey, D., Storto, A. & Vancoppenolle, M. 2017.
NEMO ocean engine. France, Institut Pierre-Simon
Laplace. Available from: https://www.earth-prints.org/
handle/2122/13309 Access date: 23 jul. 2024.
Mercator Ocean. 2024. MOI GLO 12. Toulouse, Mercator
Ocean International. Available from: https://www.mercatorocean.eu/en/solutions-expertise/accessing-digital-data/
product-details/?offer=4217979b-2662-329a-907c602fdc69c3a3&system=d35404e4-40d3-59d6-3608-
c9495d86a. Access date: 2024 Abr. 09.
Monroy, P., Hernández-García, E., Rossi, V. & López, C.
Modeling the dynamical sinking of biogenic
particles in oceanic flow. Nonlinear Processes in
Geophysics, 24(2), 293–305. DOI: https://npg.
copernicus.org/articles/24/293/2017
Müller, R.-J., Kleeberg, I. & Deckwer, W.-D. 2001.
Biodegradation of polyesters containing aromatic
constituents. Journal of biotechnology, 86(2), 87–95.
Pabortsava, K. & Lampitt, R. S. 2020. High concentrations
of plastic hidden beneath the surface of the Atlantic
Ocean. Nature Communications, 11(1), 4073. Doi:
https://doi.org/10.1038/s41467-020-17932-9
Poulain, M., Mercier, M. J., Brach, L., Martignac, M.,
Routaboul, C., Perez, E., Desjean, M. C. & Ter Halle, A.
Small Microplastics As a Main Contributor to Plastic
Mass Balance in the North Atlantic Subtropical Gyre.
Environmental Science & Technology, 53(3), 1157–1164.
DOI: https://doi.org/10.1021/acs.est.8b05458
Primeau, F. 2005. Characterizing Transport between the
Surface Mixed Layer and the Ocean Interior with a
Forward and Adjoint Global Ocean Transport Model.
Journal of Physical Oceanography 35(4): 545–564. DOI:
https://doi.org/10.1175/JPO2699.1
Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel,
B. T., Hoh, E., Karapanagioti, H. K., Rios-Mendoza,
L. M., Takada, H., Teh, S. & Thompson, R. C. 2013.
Classify plastic waste as hazardous. Nature, 494(7436),
–171. DOI: https://doi.org/10.1038/494169a
Rochman, C. M., Hentschel, B. T. & Teh, S. J. 2014. LongTerm Sorption of Metals Is Similar among Plastic Types:
Implications for Plastic Debris in Aquatic Environments.
PLOS ONE, 9(1), e85433. DOI: https://doi.org/10.1371/
journal.pone.0085433
Ross, O. N. & Sharples, J. 2004. Recipe for 1-D Lagrangian
particle tracking models in space-varying diffusivity.
Limnology and Oceanography: Methods, 2(9), 289–302.
DOI: https://doi.org/10.1371/journal.pone.0085433
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989.
Colloidal Dispersions, Cambridge Monographs on
Mechanics. Cambridge, Cambridge University Press.
Sang, T., Wallis, C. J., Hill, G. & Britovsek, G. J. P. 2020.
Polyethylene terephthalate degradation under natural
and accelerated weathering conditions. European
Polymer Journal, 136, 109873. DOI: https://doi.
org/10.1016/j.eurpolymj.2020.109873
Sutherland, B. R., Dibenedetto, M., Kaminski, A. & van
den Bremer, T. 2023. Fluid dynamics challenges in
predicting plastic pollution transport in the ocean: A
perspective. Physical Review Fluids, 8(7), 070701.
Publisher: American Physical Society. DOI: https:doi.
org/10.1103/PhysRevFluids.8.070701
Ter Halle, A., Ladirat, L., Gendre, X., Goudouneche, D.,
Pusineri, C., Routaboul, C., Tenailleau, C., Duployer,
B. & Perez, E. 2016. Understanding the Fragmentation
Pattern of Marine Plastic Debris. Environmental Science
& Technology, 50(11), 5668–5675. DOI: https://doi.
org/10.1021/acs.est.6b00594
Thygesen, U. H. 2011. How to reverse time in stochastic particle
tracking models. Journal of Marine Systems, 88(2),159–
DOI: https://doi.org/10.1016/j.jmarsys.2011.03.009
Tuan Pham, D., Verron, J. & Christine Roubaud, M.
A singular evolutive extended Kalman filter for
data assimilation in oceanography. Journal of Marine
Systems, 16(3), 323–340. DOI: https://doi.org/10.1016/
S0924-7963(97)00109-7
Turcotte, D. L. 1986. Fractals and fragmentation, Journal
of Geophysical Research: Solid Earth, 91(B2), 1921–
DOI: https://doi.org/10.1029/JB091iB02p01921
van Sebille, E., Aliani, S., Law, K. L., Maximenko, N.,
Alsina, J. M., Bagaev, A., Bergmann, M., Chapron,
Backtracking abyssal nanoplastics
Ocean and Coastal Research 2024, v72:e24043 16
Pierard et al.
B., Chubarenko, I., Cózar, A., Delandmeter, P., Egger,
M., Fox-Kemper, B., Garaba S. P., Goddijn-Murphy, L.,
Hardesty B. D., Hoffman M. J., Isobe, A., Jongedijk, C.
E., Kaandorp, M. L., A., Khatmullina, L., Koelmans, A.
A., Kukulka, T., Laufkötter, C., Lebreton, L., Lobelle,
D., Maes, C., Martinez-Vicente, V., Maqueda M. A. M.,
Poulain-Zarcos, M., Rodríguez, E., Ryan, P. G., Shanks,
A. L., Shim, W. J., Suaria, G., Thiel, M., Van Der Bremer,
T. S., Wichmann, D. 2020. The physical oceanography
of the transport of floating marine debris. Environmental
Research Letters, 15(2), 023003.
Van Sebille, E., Griff
T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet,
E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös,
K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A.
W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
Macgilchrist, G. A., Marsh, R., May-Orga Adame, C. G.,
Mcadam, R., Nencioli, F., Paris, C. B., Piggott, M. D.,
Polton, J. A., Rühs, S., Shah, S. H. A. M., Thomas, M.
D., Wang, J., Wolfram, P. J., Zanna, L. & Zika, J. D.
Lagrangian ocean analysis: Fundamentals and
practices. Ocean Modelling, 121, 49–75. DOI: https://
doi.org/10.1016/j.ocemod.2017.11.008
Visuri, O., Wierink, G. A. & Alopaeus, V. 2012. Investigation
of drag models in cfd modeling and comparison
to experiments of liquid–solid fluidized systems,
International Journal of Mineral Processing, 104, 58–70.
DOI: https://doi.org/10.1016/j.minpro.2011.12.006
Weckhuysen, B., Have, I. T., Meirer, F., Oord, R., Zettler,
E., Sebille, E. V. & Amaral-Zettler, L. 2021. Nanoscale
Infrared Spectroscopy Reveals Nanoplastics at 5000 m
Depth in the South Atlantic Ocean, preprint, In Review.
DOI: https://doi.org/10.21203/rs.3.rs-955379/v1
Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G.
L., Coppock, R., Sleight, V., Calafat, A., Rogers, A. D.,
Narayanaswamy, B. E. & Thompson, R. C. 2014. The
deep sea is a major sink for microplastic debris. Royal
Society Open Science, 1(4): 140317. DOI: https://doi.
org/10.1098/rsos.140317
Zalasiewicz, J., Waters, C. N., Ivar do Sul, J. A., Corcoran,
P. L., Barnosky, A. D., Cearreta, A., Edgeworth, M.,
Gałuszka, A., Jeandel, C., Leinfelder, R., Mc-Neill, J. R.,
Steffen, W., Summerhayes, C., Wagreich, M., Williams,
M., Wolfe, A. P. & Yonan, Y. 2016. The geological cycle
of plastics and their use as a stratigraphic indicator
of the Anthropocene. Anthropocene, 13, 4–17. DOI:
https://doi.org/10.1016/j.ancene.2016.01.002
Zhao, S., Zettler, E. R., Bos, R. P., Lin, P., Amaral-Zettler, L. A.
& Mincer, T. J. 2022. Large quantities of small microplastics
permeate the surface ocean to abyssal depths in the South
Atlantic Gyre. Global Change Biology, 28(9), 2991–3006.