Identifying the origins of nanoplastics in the abyssal South Atlantic using backtracking Lagrangian simulations with fragmentation

Authors

  • Claudio M. Pierard
  • Florian Meirer
  • Erik van Sebille

DOI:

https://doi.org/10.1590/

Keywords:

Nanoplastics, Lagrangian, Fragmentation, Transport, Ocean

Abstract

During an expedition in January 2019, nanoplastics were sampled at a depth of −5,170 m over Cape Basin,
in the South Atlantic Ocean. Using photo-induced force microscopy, it was suggested that these were
polyethylene terephthalate (PET-like) particles with various sizes down to 100 nm, at different stages of
degradation. By using a state-of-the-art Lagrangian 3D model, which includes fragmentation, we backtracked
virtual particles to map the origin of the PET nanoplastics sampled at this location. Fragmentation processes
are crucial to understanding the origin of nanoplastics (and microplastics) because they allow for detecting
when and where particles become so small that they transition to a colloidal state, in which the buoyant
force becomes negligible. We found that it is very unlikely that the nanoplastic particles entered the ocean
as nanoplastics and then drifted to the sampling location. We also found that the fragmentation scheme,
particularly the fragmentation timescale prescribed to the modeled particles, affects how they drift in the
ocean by the velocity with which they sink. This study contributes to understanding the fate and sources of
nanoplastics in the deep ocean and the development of 3D backtracking simulations for source attribution
of ocean plastic.

References

Al Harraq, A. & Bharti, B. 2022. Microplastics through

the Lens of Colloid Science. ACS Environmental

Au, 2(1), 3–10. DOI: https://doi.org/10.1021/

acsenvironau.1c00016

Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji,

N. 2018. Microplastics and Nanoplastics in Aquatic

Environments: Aggregation, Deposition, and Enhanced

Contaminant Transport. Environmental Science &

Technology, 52(4), 1704–1724. DOI: https://doi.

org/10.1021/acs.est.7b05559

Bakir, A., Rowland, S. J. & Thompson, R. C. 2014. Transport

of persistent organic pollutants by microplastics in

estuarine conditions. Estuarine, Coastal and Shelf

Science, 140, 14–21. DOI: https://doi.org/10.1016/j.

ecss.2014.01.004

Bond, T., Ferrandiz-Mas, V., Felipe-Sotelo, M. & Van

Sebille, E. 2018. The occurrence and degradation of

aquatic plastic litter based on polymer physicochemical

properties: A review. Critical Reviews in Environmental

Science and Technology, 48(7-9), 685–722. DOI:

https://doi.org/10.1080/10643389.2018.1483155

Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & CanningClode, J. 2016. Microplastics as vector for heavy metal

contamination from the marine environment. Estuarine,

Coastal and Shelf Science, 178, 189–195. DOI: https://

doi.org/10.1016/j.ecss.2015.12.003

Canals, M., Pham, C. K., Bergmann, M., Gutow, L., Hanke,

G., Sebille, E. V., Angio-Lillo, M., Buhl-Mortensen, L.,

Cau, A., Ioakeimidis, C., Kammann, U., Lundsten,

L., Papatheodorou, G., Purser, A., Sanchez-Vidal,

A., Schulz, M., Vinci, M., Chiba, S., Galgani, F.,

Langenkämper, D., Möller, T., Nattkemper, T. W.,

Ruiz, M., Suikkanen, S., Woodall, L., Fakiris, E., Jack,

M. E. M. & Giorgetti, A. 2021. The quest for seafloor

macrolitter: a critical review of background knowledge,

current methods and future prospects. Environmental

Research Letters, 16(2), 023001. DOI: https://dx.doi.

org/10.1088/1748-9326/abc6d4

Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T.,

Jang, J. H., Abu-Omar, M., Scott, S. L. & Suh, S. 2020.

Degradation Rates of Plastics in the Environment. ACS

Sustainable Chemistry & Engineering, 8(9), 3494–3511.

DOI: https://doi.org/10.1021/acssuschemeng.9b06635

Chiba, S., Saito, H., Fletcher, R., Yogi, T., Kayo, M., Miyagi,

S., Ogido, M. & Fujikura, K. 2018. Human footprint

in the abyss: 30 year records of deep-sea plastic

debris. Marine Policy, 96, 204–212. DOI: https://doi.

org/10.1016/j.marpol.2018.03.022

de la Fuente, R., Drótos, G., Hernández-García, E., López,

C. & Van Sebille, E. 2021. Sinking microplastics in

the water column: simulations in the Mediterranean

Sea. Ocean Science, 17(2), 431–453. DOI: https://doi.

org/10.5194/os-17-431-2021

Delandmeter, P. & Van Sebille, E. 2019. The Parcels v2.0

Lagrangian framework: new field interpolation schemes.

Geoscientific Model Development, 12(8), 3571–3584.

DOI: https://doi.org/10.5194/gmd-12-3571-2019

Delre, A., Goudriaan, M., Morales, V. H., Vaksmaa, A.,

Ndhlovu, R. T., Baas, M., Keijzer, E., De Groot, T.,

Zeghal, E., Egger, M., Röckmann, T., Niemann, H.

Plastic photodegradation under simulated marine

conditions. Marine Pollution Bulletin, 187, 114544. DOI:

https://doi.org/10.1016/j.marpolbul.2022.114544

Denes, M. C., Froyland, G. & Keating, S. R. 2022.

Persistence and material coherence of a mesoscale

ocean eddy. Physical Review Fluids, 7(3), 034501.

DeVries, T. & Primeau, F. 2011. Dynamically and

Observationally Constrained Estimates of Water-Mass

Distributions and Ages in the Global Ocean. Journal

of Physical Oceanography, 41(12), 2381–2401. DOI:

https://doi.org/10.1175/JPO-D-10-05011.1

Egger, M., Sulu-Gambari, F. & Lebreton, L. 2020. First

evidence of plastic fallout from the North Pacific

Garbage Patch. Scientific Reports, 10(1): 7495. DOI:

https://doi.org/10.1038/s41598-020-64465-8

Einstein, A. 1956. Investigation on the Theory of Brownian

Movement edited by R. Furth. New York, Dover.

European Comission. 2023. Nanoplastics: state of

knowledge and environmental and human health impacts.

Luxembourg, Publications Off

Geyer, R. 2020. A Brief History of Plastics. In: StreitBianchi, M, Cimadevila, M. & Trettnak, W. (eds.).

Mare Plasticum - The Plastic Sea: Combatting Plastic

Pollution Through Science and Art (pp. 31–47). Cham:

Springer International Publishing.

Gigault, J., El Hadri, H., Nguyen, B., Grassl, B., Rowenczyk,

L., Tufenkji, N., Feng, S. & Wiesner, M. 2021.

Nanoplastics are neither microplastics nor engineered

nanoparticles. Nature Nanotechnology, 16(5), 501–507.

Number: 5 Publisher: Nature Publishing Group. DOI:

https://doi.org/10.1038/s41565-021-00886-4

Hartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv,

M., Verschoor, A., Dau-Gaard, A. E., Rist, S., Karlsson,

Backtracking abyssal nanoplastics

Ocean and Coastal Research 2024, v72:e24043 15

Pierard et al.

T., Brennholt, N., Cole, M., Herrling, M. P., Hess, M.

C., Ivleva, N. P., Lusher, A. L. & Wagner, M. 2019. Are

We Speaking the Same Language? Recommendations

for a Definition and Categorization Framework for

Plastic Debris. Environmental Science & Technology,

(3), 1039–1047. DOI: https://doi.org/10.1021/acs.

est.8b05297

Haza, A. C., Özgökmen, T. M., Griffa, A., Garraffo, Z. D. &

Piterbarg, L. 2012. Parameterization of particle transport

at submesoscales in the gulf stream region using

lagrangian subgridscale models. Ocean Modelling, 42,

–49.

Ioakeimidis, C., Fotopoulou, K. N., Karapanagioti, H. K.,

Geraga, M., Zeri, C., Papathanassiou, E., Galgani, F.

& Papatheodorou, G. 2016. The degradation potential

of PET bottles in the marine environment: An ATR-FTIR

based approach. Scientific Reports, 6(1): 23501. https://

doi.org/10.1038/srep23501

Kaandorp, M. L. A., Dijkstra, H. A. & Sebille, E. V. 2021.

Modelling size distributions of marine plastics under

the influence of continuous cascading fragmentation.

Environmental Research Letters, 16(5), 054075. DOI:

https://dx.doi.org/10.1088/1748-9326/abe9ea

Kholodenko, A. L. & Douglas, J. F. 1995. Generalized

Stokes-Einstein equation for spherical particle

suspensions. Physical Review E, 51(2), 1081–1090.

DOI: https://doi.org/10.1103/PhysRevE.51.1081

Lambert, S. & Wagner, M. 2016. Formation of microscopic

particles during the degradation of different polymers.

Chemosphere, 161, 510–517. DOI: https://doi.

org/10.1016/j.chemosphere.2016.07.042

Lee, H., Shim, W. J. & Kwon, J.-H. 2014. Sorption capacity

of plastic debris for hydrophobic organic chemicals.

Science of The Total Environment, 470-471: 1545–1552.

DOI: https://doi.org/10.1016/j.scitotenv.2013.08.023

Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud,

C., Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E.,

Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham,

T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T.,

Martin, N., Masson, S., Mocavero, S., Paul, J., Ousset,

C., Storkey, D., Storto, A. & Vancoppenolle, M. 2017.

NEMO ocean engine. France, Institut Pierre-Simon

Laplace. Available from: https://www.earth-prints.org/

handle/2122/13309 Access date: 23 jul. 2024.

Mercator Ocean. 2024. MOI GLO 12. Toulouse, Mercator

Ocean International. Available from: https://www.mercatorocean.eu/en/solutions-expertise/accessing-digital-data/

product-details/?offer=4217979b-2662-329a-907c602fdc69c3a3&system=d35404e4-40d3-59d6-3608-

c9495d86a. Access date: 2024 Abr. 09.

Monroy, P., Hernández-García, E., Rossi, V. & López, C.

Modeling the dynamical sinking of biogenic

particles in oceanic flow. Nonlinear Processes in

Geophysics, 24(2), 293–305. DOI: https://npg.

copernicus.org/articles/24/293/2017

Müller, R.-J., Kleeberg, I. & Deckwer, W.-D. 2001.

Biodegradation of polyesters containing aromatic

constituents. Journal of biotechnology, 86(2), 87–95.

Pabortsava, K. & Lampitt, R. S. 2020. High concentrations

of plastic hidden beneath the surface of the Atlantic

Ocean. Nature Communications, 11(1), 4073. Doi:

https://doi.org/10.1038/s41467-020-17932-9

Poulain, M., Mercier, M. J., Brach, L., Martignac, M.,

Routaboul, C., Perez, E., Desjean, M. C. & Ter Halle, A.

Small Microplastics As a Main Contributor to Plastic

Mass Balance in the North Atlantic Subtropical Gyre.

Environmental Science & Technology, 53(3), 1157–1164.

DOI: https://doi.org/10.1021/acs.est.8b05458

Primeau, F. 2005. Characterizing Transport between the

Surface Mixed Layer and the Ocean Interior with a

Forward and Adjoint Global Ocean Transport Model.

Journal of Physical Oceanography 35(4): 545–564. DOI:

https://doi.org/10.1175/JPO2699.1

Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel,

B. T., Hoh, E., Karapanagioti, H. K., Rios-Mendoza,

L. M., Takada, H., Teh, S. & Thompson, R. C. 2013.

Classify plastic waste as hazardous. Nature, 494(7436),

–171. DOI: https://doi.org/10.1038/494169a

Rochman, C. M., Hentschel, B. T. & Teh, S. J. 2014. LongTerm Sorption of Metals Is Similar among Plastic Types:

Implications for Plastic Debris in Aquatic Environments.

PLOS ONE, 9(1), e85433. DOI: https://doi.org/10.1371/

journal.pone.0085433

Ross, O. N. & Sharples, J. 2004. Recipe for 1-D Lagrangian

particle tracking models in space-varying diffusivity.

Limnology and Oceanography: Methods, 2(9), 289–302.

DOI: https://doi.org/10.1371/journal.pone.0085433

Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989.

Colloidal Dispersions, Cambridge Monographs on

Mechanics. Cambridge, Cambridge University Press.

Sang, T., Wallis, C. J., Hill, G. & Britovsek, G. J. P. 2020.

Polyethylene terephthalate degradation under natural

and accelerated weathering conditions. European

Polymer Journal, 136, 109873. DOI: https://doi.

org/10.1016/j.eurpolymj.2020.109873

Sutherland, B. R., Dibenedetto, M., Kaminski, A. & van

den Bremer, T. 2023. Fluid dynamics challenges in

predicting plastic pollution transport in the ocean: A

perspective. Physical Review Fluids, 8(7), 070701.

Publisher: American Physical Society. DOI: https:doi.

org/10.1103/PhysRevFluids.8.070701

Ter Halle, A., Ladirat, L., Gendre, X., Goudouneche, D.,

Pusineri, C., Routaboul, C., Tenailleau, C., Duployer,

B. & Perez, E. 2016. Understanding the Fragmentation

Pattern of Marine Plastic Debris. Environmental Science

& Technology, 50(11), 5668–5675. DOI: https://doi.

org/10.1021/acs.est.6b00594

Thygesen, U. H. 2011. How to reverse time in stochastic particle

tracking models. Journal of Marine Systems, 88(2),159–

DOI: https://doi.org/10.1016/j.jmarsys.2011.03.009

Tuan Pham, D., Verron, J. & Christine Roubaud, M.

A singular evolutive extended Kalman filter for

data assimilation in oceanography. Journal of Marine

Systems, 16(3), 323–340. DOI: https://doi.org/10.1016/

S0924-7963(97)00109-7

Turcotte, D. L. 1986. Fractals and fragmentation, Journal

of Geophysical Research: Solid Earth, 91(B2), 1921–

DOI: https://doi.org/10.1029/JB091iB02p01921

van Sebille, E., Aliani, S., Law, K. L., Maximenko, N.,

Alsina, J. M., Bagaev, A., Bergmann, M., Chapron,

Backtracking abyssal nanoplastics

Ocean and Coastal Research 2024, v72:e24043 16

Pierard et al.

B., Chubarenko, I., Cózar, A., Delandmeter, P., Egger,

M., Fox-Kemper, B., Garaba S. P., Goddijn-Murphy, L.,

Hardesty B. D., Hoffman M. J., Isobe, A., Jongedijk, C.

E., Kaandorp, M. L., A., Khatmullina, L., Koelmans, A.

A., Kukulka, T., Laufkötter, C., Lebreton, L., Lobelle,

D., Maes, C., Martinez-Vicente, V., Maqueda M. A. M.,

Poulain-Zarcos, M., Rodríguez, E., Ryan, P. G., Shanks,

A. L., Shim, W. J., Suaria, G., Thiel, M., Van Der Bremer,

T. S., Wichmann, D. 2020. The physical oceanography

of the transport of floating marine debris. Environmental

Research Letters, 15(2), 023003.

Van Sebille, E., Griff

T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet,

E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös,

K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A.

W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,

Macgilchrist, G. A., Marsh, R., May-Orga Adame, C. G.,

Mcadam, R., Nencioli, F., Paris, C. B., Piggott, M. D.,

Polton, J. A., Rühs, S., Shah, S. H. A. M., Thomas, M.

D., Wang, J., Wolfram, P. J., Zanna, L. & Zika, J. D.

Lagrangian ocean analysis: Fundamentals and

practices. Ocean Modelling, 121, 49–75. DOI: https://

doi.org/10.1016/j.ocemod.2017.11.008

Visuri, O., Wierink, G. A. & Alopaeus, V. 2012. Investigation

of drag models in cfd modeling and comparison

to experiments of liquid–solid fluidized systems,

International Journal of Mineral Processing, 104, 58–70.

DOI: https://doi.org/10.1016/j.minpro.2011.12.006

Weckhuysen, B., Have, I. T., Meirer, F., Oord, R., Zettler,

E., Sebille, E. V. & Amaral-Zettler, L. 2021. Nanoscale

Infrared Spectroscopy Reveals Nanoplastics at 5000 m

Depth in the South Atlantic Ocean, preprint, In Review.

DOI: https://doi.org/10.21203/rs.3.rs-955379/v1

Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G.

L., Coppock, R., Sleight, V., Calafat, A., Rogers, A. D.,

Narayanaswamy, B. E. & Thompson, R. C. 2014. The

deep sea is a major sink for microplastic debris. Royal

Society Open Science, 1(4): 140317. DOI: https://doi.

org/10.1098/rsos.140317

Zalasiewicz, J., Waters, C. N., Ivar do Sul, J. A., Corcoran,

P. L., Barnosky, A. D., Cearreta, A., Edgeworth, M.,

Gałuszka, A., Jeandel, C., Leinfelder, R., Mc-Neill, J. R.,

Steffen, W., Summerhayes, C., Wagreich, M., Williams,

M., Wolfe, A. P. & Yonan, Y. 2016. The geological cycle

of plastics and their use as a stratigraphic indicator

of the Anthropocene. Anthropocene, 13, 4–17. DOI:

https://doi.org/10.1016/j.ancene.2016.01.002

Zhao, S., Zettler, E. R., Bos, R. P., Lin, P., Amaral-Zettler, L. A.

& Mincer, T. J. 2022. Large quantities of small microplastics

permeate the surface ocean to abyssal depths in the South

Atlantic Gyre. Global Change Biology, 28(9), 2991–3006.

DOI: https://doi.org/10.1111/gcb.16089

Downloads

Published

25.11.2024

How to Cite

Identifying the origins of nanoplastics in the abyssal South Atlantic using backtracking Lagrangian simulations with fragmentation. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/