The impact of functional selectivity by fisheries on the fish fauna of Abrolhos Bank
DOI:
https://doi.org/10.1590/Keywords:
Fishery management, Functional diversity, Functional hypervolume, Marine protected areas, Small-scale fisheriesAbstract
Functional diversity (FD) is one of the aspects of biodiversity that can best represent eventual changes in the
environment. Marine Protected Areas (MPAs) can be used to minimize the potential impacts of fishing on fish
stocks. The objective of this study was to evaluate the role of the MPA network in the Abrolhos Bank (Brazil)
in relation to the FD of fish fauna. Underwater visual censuses were carried out in no-take, partially protected
and unprotected zones. We used FD metrics to assess the MPA network in terms of FD in each zone. The
functional hypervolume of the target fish species was calculated. From fishers’ information, we determined the
Use Value of the main target species and proposed a Fisheries Functional Vulnerability Index (FFVI), which
can indicate management priorities for the species at a local level. The results showed that MPAs maintained
higher FD, especially in no-take areas. Two no-take sites showed significant functional divergence values, while
one no-take site and one partially protected site showed greater functional richness than unprotected sites.
A total of 23 target species accounted for 56% of the functional hypervolume. The FFVI indicated the most
vulnerable species. The results indicate that functional metrics may be more informative for assessing the
impact of fisheries. In addition, the findings reinforce the need to incorporate the local knowledge of resource
users, as recommended by international institutions.
References
Al Harraq, A. & Bharti, B. 2022. Microplastics through
the Lens of Colloid Science. ACS Environmental
Au, 2(1), 3–10. DOI: https://doi.org/10.1021/
acsenvironau.1c00016
Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji,
N. 2018. Microplastics and Nanoplastics in Aquatic
Environments: Aggregation, Deposition, and Enhanced
Contaminant Transport. Environmental Science &
Technology, 52(4), 1704–1724. DOI: https://doi.
org/10.1021/acs.est.7b05559
Bakir, A., Rowland, S. J. & Thompson, R. C. 2014. Transport
of persistent organic pollutants by microplastics in
estuarine conditions. Estuarine, Coastal and Shelf
Science, 140, 14–21. DOI: https://doi.org/10.1016/j.
ecss.2014.01.004
Bond, T., Ferrandiz-Mas, V., Felipe-Sotelo, M. & Van
Sebille, E. 2018. The occurrence and degradation of
aquatic plastic litter based on polymer physicochemical
properties: A review. Critical Reviews in Environmental
Science and Technology, 48(7-9), 685–722. DOI:
https://doi.org/10.1080/10643389.2018.1483155
Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & CanningClode, J. 2016. Microplastics as vector for heavy metal
contamination from the marine environment. Estuarine,
Coastal and Shelf Science, 178, 189–195. DOI: https://
doi.org/10.1016/j.ecss.2015.12.003
Canals, M., Pham, C. K., Bergmann, M., Gutow, L., Hanke,
G., Sebille, E. V., Angio-Lillo, M., Buhl-Mortensen, L.,
Cau, A., Ioakeimidis, C., Kammann, U., Lundsten,
L., Papatheodorou, G., Purser, A., Sanchez-Vidal,
A., Schulz, M., Vinci, M., Chiba, S., Galgani, F.,
Langenkämper, D., Möller, T., Nattkemper, T. W.,
Ruiz, M., Suikkanen, S., Woodall, L., Fakiris, E., Jack,
M. E. M. & Giorgetti, A. 2021. The quest for seafloor
macrolitter: a critical review of background knowledge,
current methods and future prospects. Environmental
Research Letters, 16(2), 023001. DOI: https://dx.doi.
org/10.1088/1748-9326/abc6d4
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T.,
Jang, J. H., Abu-Omar, M., Scott, S. L. & Suh, S. 2020.
Degradation Rates of Plastics in the Environment. ACS
Sustainable Chemistry & Engineering, 8(9), 3494–3511.
DOI: https://doi.org/10.1021/acssuschemeng.9b06635
Chiba, S., Saito, H., Fletcher, R., Yogi, T., Kayo, M., Miyagi,
S., Ogido, M. & Fujikura, K. 2018. Human footprint
in the abyss: 30 year records of deep-sea plastic
debris. Marine Policy, 96, 204–212. DOI: https://doi.
org/10.1016/j.marpol.2018.03.022
de la Fuente, R., Drótos, G., Hernández-García, E., López,
C. & Van Sebille, E. 2021. Sinking microplastics in
the water column: simulations in the Mediterranean
Sea. Ocean Science, 17(2), 431–453. DOI: https://doi.
org/10.5194/os-17-431-2021
Delandmeter, P. & Van Sebille, E. 2019. The Parcels v2.0
Lagrangian framework: new field interpolation schemes.
Geoscientific Model Development, 12(8), 3571–3584.
DOI: https://doi.org/10.5194/gmd-12-3571-2019
Delre, A., Goudriaan, M., Morales, V. H., Vaksmaa, A.,
Ndhlovu, R. T., Baas, M., Keijzer, E., De Groot, T.,
Zeghal, E., Egger, M., Röckmann, T., Niemann, H.
Plastic photodegradation under simulated marine
conditions. Marine Pollution Bulletin, 187, 114544. DOI:
https://doi.org/10.1016/j.marpolbul.2022.114544
Denes, M. C., Froyland, G. & Keating, S. R. 2022.
Persistence and material coherence of a mesoscale
ocean eddy. Physical Review Fluids, 7(3), 034501.
DeVries, T. & Primeau, F. 2011. Dynamically and
Observationally Constrained Estimates of Water-Mass
Distributions and Ages in the Global Ocean. Journal
of Physical Oceanography, 41(12), 2381–2401. DOI:
https://doi.org/10.1175/JPO-D-10-05011.1
Egger, M., Sulu-Gambari, F. & Lebreton, L. 2020. First
evidence of plastic fallout from the North Pacific
Garbage Patch. Scientific Reports, 10(1): 7495. DOI:
https://doi.org/10.1038/s41598-020-64465-8
Einstein, A. 1956. Investigation on the Theory of Brownian
Movement edited by R. Furth. New York, Dover.
European Comission. 2023. Nanoplastics: state of
knowledge and environmental and human health impacts.
Luxembourg, Publications Off
Geyer, R. 2020. A Brief History of Plastics. In: StreitBianchi, M, Cimadevila, M. & Trettnak, W. (eds.).
Mare Plasticum - The Plastic Sea: Combatting Plastic
Pollution Through Science and Art (pp. 31–47). Cham:
Springer International Publishing.
Gigault, J., El Hadri, H., Nguyen, B., Grassl, B., Rowenczyk,
L., Tufenkji, N., Feng, S. & Wiesner, M. 2021.
Nanoplastics are neither microplastics nor engineered
nanoparticles. Nature Nanotechnology, 16(5), 501–507.
Number: 5 Publisher: Nature Publishing Group. DOI:
https://doi.org/10.1038/s41565-021-00886-4
Hartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv,
M., Verschoor, A., Dau-Gaard, A. E., Rist, S., Karlsson,
Backtracking abyssal nanoplastics
Ocean and Coastal Research 2024, v72:e24043 15
Pierard et al.
T., Brennholt, N., Cole, M., Herrling, M. P., Hess, M.
C., Ivleva, N. P., Lusher, A. L. & Wagner, M. 2019. Are
We Speaking the Same Language? Recommendations
for a Definition and Categorization Framework for
Plastic Debris. Environmental Science & Technology,
(3), 1039–1047. DOI: https://doi.org/10.1021/acs.
est.8b05297
Haza, A. C., Özgökmen, T. M., Griffa, A., Garraffo, Z. D. &
Piterbarg, L. 2012. Parameterization of particle transport
at submesoscales in the gulf stream region using
lagrangian subgridscale models. Ocean Modelling, 42,
–49.
Ioakeimidis, C., Fotopoulou, K. N., Karapanagioti, H. K.,
Geraga, M., Zeri, C., Papathanassiou, E., Galgani, F.
& Papatheodorou, G. 2016. The degradation potential
of PET bottles in the marine environment: An ATR-FTIR
based approach. Scientific Reports, 6(1): 23501. https://
doi.org/10.1038/srep23501
Kaandorp, M. L. A., Dijkstra, H. A. & Sebille, E. V. 2021.
Modelling size distributions of marine plastics under
the influence of continuous cascading fragmentation.
Environmental Research Letters, 16(5), 054075. DOI:
https://dx.doi.org/10.1088/1748-9326/abe9ea
Kholodenko, A. L. & Douglas, J. F. 1995. Generalized
Stokes-Einstein equation for spherical particle
suspensions. Physical Review E, 51(2), 1081–1090.
DOI: https://doi.org/10.1103/PhysRevE.51.1081
Lambert, S. & Wagner, M. 2016. Formation of microscopic
particles during the degradation of different polymers.
Chemosphere, 161, 510–517. DOI: https://doi.
org/10.1016/j.chemosphere.2016.07.042
Lee, H., Shim, W. J. & Kwon, J.-H. 2014. Sorption capacity
of plastic debris for hydrophobic organic chemicals.
Science of The Total Environment, 470-471: 1545–1552.
DOI: https://doi.org/10.1016/j.scitotenv.2013.08.023
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud,
C., Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E.,
Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham,
T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T.,
Martin, N., Masson, S., Mocavero, S., Paul, J., Ousset,
C., Storkey, D., Storto, A. & Vancoppenolle, M. 2017.
NEMO ocean engine. France, Institut Pierre-Simon
Laplace. Available from: https://www.earth-prints.org/
handle/2122/13309 Access date: 23 jul. 2024.
Mercator Ocean. 2024. MOI GLO 12. Toulouse, Mercator
Ocean International. Available from: https://www.mercatorocean.eu/en/solutions-expertise/accessing-digital-data/
product-details/?offer=4217979b-2662-329a-907c602fdc69c3a3&system=d35404e4-40d3-59d6-3608-
c9495d86a. Access date: 2024 Abr. 09.
Monroy, P., Hernández-García, E., Rossi, V. & López, C.
Modeling the dynamical sinking of biogenic
particles in oceanic flow. Nonlinear Processes in
Geophysics, 24(2), 293–305. DOI: https://npg.
copernicus.org/articles/24/293/2017
Müller, R.-J., Kleeberg, I. & Deckwer, W.-D. 2001.
Biodegradation of polyesters containing aromatic
constituents. Journal of biotechnology, 86(2), 87–95.
Pabortsava, K. & Lampitt, R. S. 2020. High concentrations
of plastic hidden beneath the surface of the Atlantic
Ocean. Nature Communications, 11(1), 4073. Doi:
https://doi.org/10.1038/s41467-020-17932-9
Poulain, M., Mercier, M. J., Brach, L., Martignac, M.,
Routaboul, C., Perez, E., Desjean, M. C. & Ter Halle, A.
Small Microplastics As a Main Contributor to Plastic
Mass Balance in the North Atlantic Subtropical Gyre.
Environmental Science & Technology, 53(3), 1157–1164.
DOI: https://doi.org/10.1021/acs.est.8b05458
Primeau, F. 2005. Characterizing Transport between the
Surface Mixed Layer and the Ocean Interior with a
Forward and Adjoint Global Ocean Transport Model.
Journal of Physical Oceanography 35(4): 545–564. DOI:
https://doi.org/10.1175/JPO2699.1
Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel,
B. T., Hoh, E., Karapanagioti, H. K., Rios-Mendoza,
L. M., Takada, H., Teh, S. & Thompson, R. C. 2013.
Classify plastic waste as hazardous. Nature, 494(7436),
–171. DOI: https://doi.org/10.1038/494169a
Rochman, C. M., Hentschel, B. T. & Teh, S. J. 2014. LongTerm Sorption of Metals Is Similar among Plastic Types:
Implications for Plastic Debris in Aquatic Environments.
PLOS ONE, 9(1), e85433. DOI: https://doi.org/10.1371/
journal.pone.0085433
Ross, O. N. & Sharples, J. 2004. Recipe for 1-D Lagrangian
particle tracking models in space-varying diffusivity.
Limnology and Oceanography: Methods, 2(9), 289–302.
DOI: https://doi.org/10.1371/journal.pone.0085433
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989.
Colloidal Dispersions, Cambridge Monographs on
Mechanics. Cambridge, Cambridge University Press.
Sang, T., Wallis, C. J., Hill, G. & Britovsek, G. J. P. 2020.
Polyethylene terephthalate degradation under natural
and accelerated weathering conditions. European
Polymer Journal, 136, 109873. DOI: https://doi.
org/10.1016/j.eurpolymj.2020.109873
Sutherland, B. R., Dibenedetto, M., Kaminski, A. & van
den Bremer, T. 2023. Fluid dynamics challenges in
predicting plastic pollution transport in the ocean: A
perspective. Physical Review Fluids, 8(7), 070701.
Publisher: American Physical Society. DOI: https:doi.
org/10.1103/PhysRevFluids.8.070701
Ter Halle, A., Ladirat, L., Gendre, X., Goudouneche, D.,
Pusineri, C., Routaboul, C., Tenailleau, C., Duployer,
B. & Perez, E. 2016. Understanding the Fragmentation
Pattern of Marine Plastic Debris. Environmental Science
& Technology, 50(11), 5668–5675. DOI: https://doi.
org/10.1021/acs.est.6b00594
Thygesen, U. H. 2011. How to reverse time in stochastic particle
tracking models. Journal of Marine Systems, 88(2),159–
DOI: https://doi.org/10.1016/j.jmarsys.2011.03.009
Tuan Pham, D., Verron, J. & Christine Roubaud, M.
A singular evolutive extended Kalman filter for
data assimilation in oceanography. Journal of Marine
Systems, 16(3), 323–340. DOI: https://doi.org/10.1016/
S0924-7963(97)00109-7
Turcotte, D. L. 1986. Fractals and fragmentation, Journal
of Geophysical Research: Solid Earth, 91(B2), 1921–
DOI: https://doi.org/10.1029/JB091iB02p01921
van Sebille, E., Aliani, S., Law, K. L., Maximenko, N.,
Alsina, J. M., Bagaev, A., Bergmann, M., Chapron,
Backtracking abyssal nanoplastics
Ocean and Coastal Research 2024, v72:e24043 16
Pierard et al.
B., Chubarenko, I., Cózar, A., Delandmeter, P., Egger,
M., Fox-Kemper, B., Garaba S. P., Goddijn-Murphy, L.,
Hardesty B. D., Hoffman M. J., Isobe, A., Jongedijk, C.
E., Kaandorp, M. L., A., Khatmullina, L., Koelmans, A.
A., Kukulka, T., Laufkötter, C., Lebreton, L., Lobelle,
D., Maes, C., Martinez-Vicente, V., Maqueda M. A. M.,
Poulain-Zarcos, M., Rodríguez, E., Ryan, P. G., Shanks,
A. L., Shim, W. J., Suaria, G., Thiel, M., Van Der Bremer,
T. S., Wichmann, D. 2020. The physical oceanography
of the transport of floating marine debris. Environmental
Research Letters, 15(2), 023003.
Van Sebille, E., Griff
T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet,
E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös,
K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A.
W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
Macgilchrist, G. A., Marsh, R., May-Orga Adame, C. G.,
Mcadam, R., Nencioli, F., Paris, C. B., Piggott, M. D.,
Polton, J. A., Rühs, S., Shah, S. H. A. M., Thomas, M.
D., Wang, J., Wolfram, P. J., Zanna, L. & Zika, J. D.
Lagrangian ocean analysis: Fundamentals and
practices. Ocean Modelling, 121, 49–75. DOI: https://
doi.org/10.1016/j.ocemod.2017.11.008
Visuri, O., Wierink, G. A. & Alopaeus, V. 2012. Investigation
of drag models in cfd modeling and comparison
to experiments of liquid–solid fluidized systems,
International Journal of Mineral Processing, 104, 58–70.
DOI: https://doi.org/10.1016/j.minpro.2011.12.006
Weckhuysen, B., Have, I. T., Meirer, F., Oord, R., Zettler,
E., Sebille, E. V. & Amaral-Zettler, L. 2021. Nanoscale
Infrared Spectroscopy Reveals Nanoplastics at 5000 m
Depth in the South Atlantic Ocean, preprint, In Review.
DOI: https://doi.org/10.21203/rs.3.rs-955379/v1
Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G.
L., Coppock, R., Sleight, V., Calafat, A., Rogers, A. D.,
Narayanaswamy, B. E. & Thompson, R. C. 2014. The
deep sea is a major sink for microplastic debris. Royal
Society Open Science, 1(4): 140317. DOI: https://doi.
org/10.1098/rsos.140317
Zalasiewicz, J., Waters, C. N., Ivar do Sul, J. A., Corcoran,
P. L., Barnosky, A. D., Cearreta, A., Edgeworth, M.,
Gałuszka, A., Jeandel, C., Leinfelder, R., Mc-Neill, J. R.,
Steffen, W., Summerhayes, C., Wagreich, M., Williams,
M., Wolfe, A. P. & Yonan, Y. 2016. The geological cycle
of plastics and their use as a stratigraphic indicator
of the Anthropocene. Anthropocene, 13, 4–17. DOI:
https://doi.org/10.1016/j.ancene.2016.01.002
Zhao, S., Zettler, E. R., Bos, R. P., Lin, P., Amaral-Zettler, L. A.
& Mincer, T. J. 2022. Large quantities of small microplastics
permeate the surface ocean to abyssal depths in the South
Atlantic Gyre. Global Change Biology, 28(9), 2991–3006.
Downloads
Published
Issue
Section
License
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.