Spatiotemporal analysis of mangrove vegetation in a protected area using spectral indices

Authors

  • Ivo Raposo Gonçalves Cidreira-Neto
  • Vinícius D’Lucas Bezerra e Queiroz
  • Ana Lúcia Bezerra Candeias
  • Betânia Cristina Guilherme Guilherme
  • Gilberto Gonçalves Rodrigues

DOI:

https://doi.org/10.1590/

Keywords:

Coastal ecosystem, Remote sensing, Management

Abstract

Mangrove is an important transitional ecosystem between terrestrial and marine environments, with a typical
vegetation (mangrove) that tolerates the intense variation of salinity coming from the tides. The application of
remote sensing techniques based on spectral indices enables the development of spatiotemporal monitoring
of this vegetation, thus subsidizing ecosystem management. This study aimed to evaluate the spatiotemporal
analysis of mangrove vegetation in RESEX Acaú-Goiana based on spectral indices. The study area was the
mangrove in RESEX Acaú-Goiana, a protected area of sustainable use in northeastern Brazil between the states
of Pernambuco and Paraíba. Images from the TM/ Landsat 5 and OLI/Landsat 8 sensors from 1992, 2006, 2010,
and 2019 were used and the normalized difference vegetation (NDVI), normalized difference water (NDWI),
and modular mangrove recognition indices were applied. NDVI varied from 0.5 to > 0.75; NDWI, from 0.25
to 0.75; and MMRI, from −0.6 and −0.3. 2019 showed the lowest average of these indices. The evolution
of the establishment of carciniculture (shrimp farming) nurseries in the inner portion of the reserve becomes
evident, which may result in environmental damage to the ecosystem. Results will serve as input for developing
monitoring strategies and managing the reserve.

References

Adame, M.F., Connolly, R.M., Turschwell, M.P., Lovelock,

C.E., Fatoyinbo, T., Lagomasino, D., Goldberg, L.A.,

Holdorf, J., Friess, D.A., Sasmito, S.D., Sanderman, J.,

Sievers, M., Buelow, C., Kauffman, J.B., Bryan-Brown,

D. & Brown, C.J. 2021. Future carbon emissions from

global mangrove forest loss. Global Change Biology,

(12), 2856–2866. DOI: https://doi.org/10.1111/gcb.15571

Barletta, M. & Lima, A. R. A. 2019. Systematic Review

of Fish Ecology and Anthropogenic Impacts in South

American Estuaries: Setting Priorities for Ecosystem

Conservation. Frontiers in Marine Science, 6(237). DOI:

https://doi.org/10.3389/fmars.2019.00237

Bryan-Brown, D. N., Connolly, R. M., Richards, D. R.,

Adame, F., Friess, D. A. & Brown, C. J. 2020. Global

trends in mangrove forest fragmentation. Scientific

Reports, 10. DOI: https://doi.org/10.1038/s41598-020-

-1

Cidreira-Neto, I. R. G., Rodrigues, G. G. & Candeias, A. L. B.

Pesca artesanal: identidade e representatividades

da mulher na pesca artesanal. Cadernos de Gênero e

Tecnologia, 13(42), 62–76. DOI: https://doi.org/10.3895/

cgt.v13n42.10577

Cidreira-Neto, I. R. G., Guilherme, B. C., Rodrigues, G. G. &

Candeias, A. L. B. 2022. Qualidade da água no estuário

do rio Goiana, Nordeste do Brasil: subsídios para a

conservação. Revista Brasileira de Geografia Física,

(5), 2340–2353. DOI: https://doi.org/10.26848/rbgf.

v15.5.p2340-2353

Costa, M. F., Barbosa, S. C. T., Barletta, M., Dantas, D. V.,

Kehrig, H. A., Seixas, T. G. & Malm, O. 2009. Seasonal

differences in mercury accumulation in Trichiurus

lepturus (Cutlassfish) in relation to length and weight in

a Northeast Brazilian estuary. Environmental Science

and Pollution Research, 16(493), 423–430. DOI: https://

doi.org/10.1007/s11356-009-0120-x

Costa, C. R., Costa, M. F., Dantas, D. V. & Barletta, M.

Interannual and seasonal variations in estuarine

water quality. Frontiers in Marine Science, 5(301). DOI:

https://doi.org/10.3389/fmars.2018.00301

Costa-Silva, M. C. S., Pereira-Silva, H. C. M., Teixeira,

K. P. S. B., Bedor, D. C. G., Leal, L. B. & Santana,

D. P. 2020. Investigation into the occurrence of

herbicide residues in the rivers of the Acaú-Goiana

extractive reserve. Revista Ibero-Americana de Ciências

Ambientais, 11(2), 360–366. http://doi.org/10.6008/

CBPC2179-6858.2020.002.0033

Cunha-Lignon, M., Menghini, R. P., Santos, L. C. M.,

Niemeyer-Dinóla, C. & Schaeffer-Novelli, Y. 2009.

Estudos de caso nos manguezais do Estado de São

Paulo (Brasil): aplicação de ferramentas com diferentes

escalas espaço-temporais. Revista De Gestão Costeira

Integrada, 9(1), 79–91.

Diniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Sadeck,

L., Adami, M. & Souza-Filho, P. W. M. 2019. Brazilian

mangrove status: three decades of satellite data

analysis. Remote Sensing, 11(7), 808. DOI: https://

doi.org/10.3390/rs11070808.

Fadigas, A. B. M. & Garcia, L. G. 2010. Uma análise do

processo participativo para a conservação do ambiente

na criação da Reserva Extrativista Acaú-Goiana.

Sociedade e Natureza, 22(3), 561–576.

Faruque, J., Vekerdy, Z., Hasan, Y., Islam, K. Z.,

Young, B., Ahmed, M. T., Monir, M. U., Shovon, S. M.,

Kakon, J. F. & Kundu, P. 2022. Monitoring of land use

and land cover changes by using remote sensing and

GIS techniques at human-induced mangrove forests

areas in Bangladesh. Remote Sensing Applications:

Society and Environment, 25, 100699. DOI: https://

doi.org/10.1016/j.rsase.2022.100699

Freire-Silva, J., Gomes, M. B., Candeias, A. L. B. & Rodrigues,

G. G. 2020. Análise das dinâmicas vegetacionais e

impactos na zona de borda da Reserva Extrativista

Marinha Acaú-Goiana (Pernambuco/Paraíba - Brasil) e

sua área de entorno. GeoNordeste, 1, 188-207.

Friess, D.A., Rogers, K., Lovelock, C.E., Krauss, K.W.,

Hamilton, S.E., Lee, S.Y., Lucas, R., Primavera, J.,

Rajkaran, A. & Shi, S. 2019. The state of the World’s

Mangrove Forests: past, present, and future. Annual

Review of Environment and Resources, 44, 89-115.

DOI: https://doi.org/10.1146/annurev-environ-101718-

Gao, B. C. 1996. NDWI – A Normalized Difference Water

Index for remote sensing of vegetation liquid water from

space. Remote Sensing of Environment, 58(3), 257–266.

DOI: https://doi.org/10.1016/S0034-4257(96)00067-3

Getzner, M. & Islam, M. S. 2020. Ecosystem services of

mangrove forests: results of a meta-analysis of economic

values. International Journal of Environmental Research

and Public Health, 17(16). DOI: https://doi.org/10.3390/

ijerph17165830

Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A.,

Loveland, T., Masek, J. & Duke, N. 2011. Status and

distribution of mangrove forests of the world using

earth observation satellite data. Global Ecology

and Biogeography, 20(1), 154–159. DOI: https://

doi.org/10.1111/j.1466-8238.2010.00584.x

Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T.

Global declines in human-driven mangrove loss.

Global Change Biology, 26(10), 5844–5855. DOI: https://

doi.org/10.1111/gcb.15275

Guimarães, A. S., Travassos, P., Souza-Filho, P. W. M.,

Gonçalves, F. D. & Costa, F. 2010. Impact of aquaculture

on mangrove areas in the northern Pernambuco Coast

(Brazil) using remote sensing and geographic information

system. Aquaculture Research, 41, 828–838. DOI:

https://doi.org/10.1111/j.1365-2109.2009.02360.x

Jennerjahn, T. C., Gilman, E., Krauss, K. W., Lacerda,

L. D., Nordhaus, I. & Wolanski, E. 2017. Mangrove

Ecosystems under Climate Change. In: RiveraMonroy, V. H., Lee, S. Y., Kristensen, E. & Twilley, R. R.

Spectral indices of mangrove vegetation

Ocean and Coastal Research 2024, v72:e24056 7

Cidreira-Neto et al.

(eds.). Mangrove Ecosystems: A global biogeographic

perspective (pp. 211-244). New York: Springer

International Publishing.

Kathiresan, K. & Bingham, B. L. 2001. Biology of mangroves

and mangrove ecosystems. Advances in Marine

Biology, 40, 81–251. DOI: https://doi.org/10.1016/

S0065-2881(01)40003-4

Nascimento, D. M., Alves, R. R. N., Barboza, R. R. D., Schmidt,

A. J., Diele, K. & Mourão, J. S. 2017. Commercial

relationships between intermediaries and harvesters

of the mangrove crab Ucides cordatus (Linnaeus,

in the Mamanguape River estuary, Brazil,

and their socio-ecological implications. Ecological

Economics, 131, 44–51. DOI: https://doi.org/10.1016/j.

ecolecon.2016.08.017

Pinto, M. F., Mourão, J. S. & Alves, R. R. N. 2015. Use

of ichthyofauna by artisanal fishermen at two protected

areas along the coast of Northeast Brazil. Journal of

Ethnoniology and Ethnomedicine, 11(20). DOI: https://

doi.org/10.1186/s13002-015-0007-5

Roy, S., Mahapatra, M. & Chakraborty, A. 2019. Mapping

and monitoring of mangrove along the Odisha coast

based on remote sensing and GIS techniques. Modeling

Earth Systems and Environment, 5, 217–226. DOI:

https://doi.org/10.1007/s40808-018-0529-7

Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, D. W.

Monitoring vegetation systems in the Great Plains

with ERTS. In: Freden, S. C., Mercanti, E. P. & Becker, M.

(eds). Third Earth Resources Technology Satellite–1

Symposium. Volume I: Technical Presentations, NASA

SP- 351 (pp. 309-317). Washington: NASA.

Schaeffer-Novelli, Y. 2018. A diversidade do ecossistema

manguezal. In: Ministério do Meio Ambiente. Atlas dos

Manguezais do Brasil. Brasília, DF: Instituto Chico

Mendes de Conservação da Biodiversidade.

Silva-Cavalcanti, J. & Costa, M.F. 2011. Fisheries of

Anomalocardia brasiliana in Tropical Estuaries.

Pan-American Journal of Aquatic Science, 6(2), 86–99.

Spalding, M., Blasco, F. & Field, C. 1997. World mangroves

atlas. Okinawa, International Society for Mangrove

Ecosystems.

Thompson, B. S. & Rog, S. M. 2019. Beyond ecosystem

services: Using charismatic megafauna as

flagship species for mangrove forest conservation.

Environmental Science and Policy, 102, 9–17. DOI:

https://doi.org/10.1016/j.envsci.2019.09.009

Vo, Q. T., Kuenzer, C., Vo, Q. M., Moder, F. & Oppelt, N.

Review of valuation methods for mangrove

ecosystem services. Ecological Indicators, 23, 431–446.

DOI: https://doi.org/10.1016/j.ecolind.2012.04.022

Xu, H. 2006. Modification of normalized difference water

index (NDWI) to enhance open water features in

remotely sensed imagery. International Journal of

Remote Sensing, 27(14), 3025–3033. DOI: https://

doi.org/10.1080/01431160600589179

Downloads

Published

17.12.2024

How to Cite

Spatiotemporal analysis of mangrove vegetation in a protected area using spectral indices. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/