First determination of photosynthetic pigments in surface sediments from the continental shelf and slope of the northwestern Gulf of Mexico
DOI:
https://doi.org/10.1590/2675-2824073.23175Keywords:
Photopigments, HPLC, Chlorophylls, Carotenoids, Sedimentary pigmentAbstract
Marine pigments are more commonly used in food, pharmaceuticals, aquaculture and cosmetics industries. Marine pigments have a significant economic importance, constituting a multimillion-dollar industry that is still growing. Considering this, we decided to conduct a descriptive study of the photosynthetic pigments in surface sediments from the continental shelf and slope of 14 sites located in the northwestern Gulf of Mexico, obtained during October-November 2012. These pigments were analyzed using high-performance liquid chromatography. At least one pigment was detected in 10 of the samples examined, and a total of six pigments were identified, including three photosynthetic pigments and three chlorophyll-a degradation products: pheophorbide-a, pyrophaeophytin-a and phaeophytin-a. The pigments with the highest concentration were β-carotene and pheophorbide-a. Significant pigment concentrations were observed in inshore areas exposed to the influence of river discharge (Bravo and Soto La Marina) and Laguna Madre. The pigment composition and concentration were influenced by depth, temperature, salinity, and nickel concentration. Finally, a correlation between Ni, an indirect hydrocarbon contaminant marker, and pigment concentrations was observed. A deeper understanding of marine pigments certainly will fuel advances in biotechnology and bioengineering. We find it crucial to recognize the interactions between marine pigments and other ecosystem components. Despite pigment diversity, exploration in this field is still in its first stages, with many marine compounds awaiting further exploration.
Downloads
References
Anderson, M. J., Gorley, R. N. & Clarke, K. R. 2008. PERMANOVA for PRIMER: Guide to Software and Statistical Methods. PRIMER-E Ltd, Plymouth, U.K. (214 pp).
Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32–46. DOI: http://dx.doi.org/10.1111/j.1442-993.2001.01070.pp.x
Ayala-Castañares, A., Cruz, R., García-Cubas, A. & Segura, L. R. 1996. Síntesis de los conocimientos sobre la Geología Marina de la Laguna de Tamiahua, Veracruz, México. In: AYALA-CASTAÑARES, A. & PHLEGER, F. B. (Ed). Lagunas Costeras, un Simposio. Memorias del Simposio Internacional sobre Lagunas Costeras: Origen, Dinámica y Productividad (pp. 39-48). Ciudad de México, DF: UNAM-UNESCO.
Beyer, J., Trannum, H. C., Bakke, T., Hodson, P. V. & Collier, T. K. 2016. Environmental effects of the Deepwater Horizon oil spill: A review. Marine Pollution Bulletin, 110(1), 28–51. DOI: https://doi.org/10.1016/j.marpolbul.2016.06.027
Bianchi, T. S., Johansson, B. & Elmgren, R. 2000. Breakdown of phytoplankton pigments in Baltic sediments: effects of anoxia and loss of deposit-feeding macrofauna. Journal of Experimental Marine Biology and Ecology, 251(2), 161–183. DOI: https://doi.org/10.1016/S0022-0981(00)00212-4
Biggs, D. C. 1992. Nutrients, plankton, and productivity in a warm-core ring in the western Gulf of Mexico. Journal of Geophysical Research, 97(C2), 2143. DOI: https://doi.org/10.1029/90JC02020
Botello, A. V. (Ed.). 2005. Golfo de México: contaminación e impacto ambiental: diagnóstico y tendencias. Universidad Juárez Autónoma de Tabasco.
Botello, A. V., Soto, L. A., Ponce-Vélez, G. & Villanueva F., S. 2015. Baseline for PAHs and metals in NW Gulf of Mexico related to the Deepwater Horizon oil spill. Estuarine, Coastal and Shelf Science, 156, 124–133. DOI: https://doi.org/10.1016/j.ecss.2014.11.010
Buchaca, T. & Catalan, J. 2007. Factors influencing the variability of pigments in surface sediments of mountain lakes. Freshwater Biology, 52, 1365–1379. DOI: https://doi.org/10.1111/j.1365-2427.2007.01774.x
Camilli, R., Reddy, C. M., Yoerger, D. R., Van Mooy, B. A. S., Jakuba, M. V., Kinsey, J. C., Mcintyre, C. P., Sylva, S. P. & MALONEY, J. V. 2010. Tracking Hydrocarbon Plume Transport and Biodegradation at Deepwater Horizon. Science, 330(6001), 201–204. DOI: https://doi.org//10.1126/science.1195223
Clarke, K. R. & Warwick, R. M. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth: Plymouth Marine Laboratory.Contreras, E. F. 1988. Las Lagunas Costeras Mexicanas. Ciudad de México: Secretaria de Pesca.
Delgado-Blas, V. H. 2001. Distribución espacial y temporal de poliquetos (Polychaeta) bénticos de la plataforma continental de Tamaulipas, Golfo de México.
Revista Biología Tropical, 49, 141–147. Available at: https://www.scielo.sa.cr/scielo.php?pid=S0034-77442001000100013&script=sci_abstract&tlng=es. Access date: 2022 Sep. 20.
Diercks, A. R., Highsmith, R. C., Asper, V. L., Joung, D., Zhou, Z., Guo, L., Shiller, A. M., Joye, S. B., Teske, A. P., Guinasso, N., Wade, T. L. & Lohrenz, S. E. 2010. Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site: Subsurface
Pah At Deepwater Horizon Site. Geophysical Research Letters, 37(20). DOI: https://doi.org/10.1029/2010GL045046
Dubranna, J., Pérez-Brunius, P., López, M. & Candela, J. 2011. Circulation over the continental shelf of the western and southwestern Gulf of Mexico. Journal of Geophysical Research, 116(C8), C08009. DOI: https://doi.org/10.1029/2011JC007007
Fabiano, M. & Danovaro, R. 1994. Composition of organic matter in sediments facing a river estuary (Tyrrhenian Sea): relationships with bacteria and microphytobenthic biomass. Hydrobiologia, 277, 71–84. DOI: https://doi.org/10.1007/BF00016755
Fernández-Eguiarte, A., Zavala, J. & Romero, R. 1998. Circulación de invierno en la Plataforma de Tamaulipas y áreas adyacentes. IX Reunión Nacional SELPERMéxico. Available at: https://www.scienceopen. Photopigments in sediments (Gulf of Mexico) Ocean and Coastal Research 2025, v73:e25008 11 Estradas-Romero et al. com/document?vid=b7d5d818-e55f-4012-a51b2f529ac22dec. Access date: 2022 Sep 20.
Gajewska, E., Skłodowska, M., Słaba, M. & Mazur, J. 2006. Effect of nickel on antioxidative enzyme activities, proline, and chlorophyll contents in wheat shoots. Biologia Plantarum, 50(4), 653–659. DOI: https://doi.org/10.1007/s10535-006-0102-5
Gerendás, J., Polacco, J. C., Freyermuth, S. K. & Sattelmacher, B. 1999. Significance of nickel for plant growth and metabolism. Journal of Plant Nutrition and Soil Science, 162(3), 241–256. DOI: https://doi.org/10.1002/SICI)1522-2624(199906)162:3<241:AIDJPLN241>3.0.CO;2-Q
Guerrero, F., Rodríguez, V., Bautista, B. & JiménezGómez, F. 1988. Procesos de formación y pérdida de feopigmentos en sistemas pelágicos: evaluación en condiciones de laboratorio. Investigación Pesquera, 52, 437–449.
Hamilton, P., Fargion, G. S. & Biggs, D. C. 1999. Loop Current Eddy paths in the Western Gulf of Mexico. Journal of Physical Oceanography, 29, 1180–1207. DOI: https://doi.org/10.1175/1520-0485(1999)029<1180: LCEPIT>2.0.CO;2
Hamilton, P. 2009. Topographic Rossby waves in the Gulf of Mexico. Progress in Oceanography, 82(1), 1–31. DOI: https://doi.org/10.1016/j.pocean.2009.04.019
Hamilton, P., Berger, T. J. & Johnson, W. 2002. On the structure and motions of cyclones in the northern Gulf of Mexico: Cyclones in the Northern Gulf of Mexico. Journal of Geophysical Research: Oceans, 107(C12), 1–18. DOI: https://doi.org/10.1029/1999JC000270
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1–9.
Heaton, J. W. & Marangoni, A. G. 1996. Chlorophyll degradation in processed foods and senescent plant tissues. Trends in Food Science & Technology, 7(1), 8–15. DOI: https://doi.org/10.1016/0924-2244(96)81352-5
Herbland, A. 1988. The Deep Phaeopigments Maximum in the Ocean: Reality or Illusion? In: ROTHSCHILD, B. J. (Ed.). Toward a Theory on Biological-Physical Interactions in the World Ocean (pp. 157–172). Dordrecht: Springer.
Hu, C., Weisberg, R. H., Liu, Y., Zheng, L., Daly, K. L., English, D. C., Zhao, J. & Vargo, G. A. 2011. Did the northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill? Geophysical Research Letters, 38(9), 2011GL047184. DOI: https://doi.org/10.1029/2011GL047184
Jeffrey, S. W. & Vest, M. 1997. Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey, S. W., Mantoura, R. F. C. & Wright, S. W. (Ed.). Phytoplankton Pigments in Oceanography (pp. 37–84). Paris: Unesco.
Jeffrey, S. W., Wright, S. W. & Zapata, M. 1999. Recent advances in HPLC pigment analysis of phytoplankton. Marine and Freshwater Research, 50, 879–896. DOI: https://doi.org/10.1071/MF99109.
Kowalewska, G. & Konat, J. 1997. Distribution of polynuclear aromatic hydrocarbons (PAHs) in sediments of the southern Baltic Sea. Oceanologia, 39(1), 83–104.
Kowalewska, G. 1994. Steryl chlorin esters in sediments of the southern Baltic Sea. Netherlands Journal of Aquatic Ecology, 28(2), 149–156. DOI: https://doi.org/10.1007/BF02333985
Kowalewska, G. 2005. Algal pigments in sediments as a measure of eutrophication in the Baltic environment. Quaternary International, 130(1), 141–151. DOI: https://doi.org/10.1016/j.quaint.2004.04.037
Kowalewska. G., Witkowski, A. & Toma, B. 1996. Chlorophylls c in bottom sediments as markers of diatom biomass in the southern Baltic Sea. Oceanologia, 38(2), 227–249.
Küpper, H., Seibert, S. & Parameswaran, A. (2007). Fast, sensitive, and inexpensive alternative to analytical pigment HPLC: quantification of chlorophylls and carotenoids in crude extracts by fitting with Gauss peak spectra. Analytical Chemistry, 79(20), 7611–7627.
Laneve, G., Bruno, M., Mukherjee, A., Messineo, V., Giuseppetti, R., De Pace, R. & D’ugo, E. 2021. Remote sensing detection of algal blooms in a lake impacted by petroleum hydrocarbons. Remote Sensing, 14(1), 121. DOI: https://doi.org/10.3390/rs14010121
Liu, Q., Zhou, L., Liu, F., Fortin, C., Tan, Y., Huang, L. & Campbell, P. G. 2019. Uptake and subcellular distribution of aluminum in a marine diatom. Ecotoxicology and Environmental Safety, 169, 85–92. https://doi.org/10.1016/j.ecoenv.2018.10.095
Liu, Y., Weisberg, R. H., Hu, C. & Zheng, L. 2011. Tracking the Deepwater Horizon Oil Spill: A Modeling Perspective. EOS, Transactions American Geophysical Union, 92(6), 45–46. DOI: https://doi.org/10.1029/2011EO060001
Macías-Zamora, J. V., Villaescusa-Celaya, J. A., Muñoz-Barbosa, A. & Gold-Bouchot, G. 1999. Trace metals in sediment cores from the Campeche shelf, Gulf of Mexico. Environmental Pollution, 104(1), 69–77. DOI: https://doi.org/10.1016/S0269-7491(98)00153-5
Martínez-López, B. & Zavala-Hidalgo, J. 2009. Seasonal and interannual variability of cross-shelf transports of chlorophyll in the Gulf of Mexico. Journal of Marine Systems, 77, 1–20. DOI: https://doi.org/10.1016/j.jmarsys.2008.10.002
Megharaj, M., Singleton, I., Mcclure, N. C. & Naidu, R. 2000. Influence of Petroleum Hydrocarbon Contamination on Microalgae and Microbial Activities in a Long-Term Contaminated Soil. Archives of Environmental Contamination and Toxicology, 38(4), 439–445. DOI: https://doi.org/10.1007/s002449910058
Meza‐Padilla, R., Enriquez, C., Liu, Y. & Appendini, C. M. 2019. Ocean circulation in the western Gulf of Mexico using self‐organizing maps. Journal of Geophysical Research Oceans, 124, 4152–4167. DOI: https://doi.org/10.1029/2018JC014377
Nelson, J. R. 1993. Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton. Journal of Marine Research, 51(1), 155–179. DOI: https://doi.org/10.1357/0022240933223837
Othman, H. B., Pick, F. R., Hlaili, A. S. & Leboulanger, C. (2023). Effects of polycyclic aromatic hydrocarbons on marine and freshwater microalgae–A review. Journal of Hazardous Materials, 441, 129869. Photopigments in sediments (Gulf of Mexico) Ocean and Coastal Research 2025, v73:e25008 12 Estradas-Romero et al.
Palmer, S. E. & Baker, E. W. 1978. Copper Porphyrins in Deep-Sea Sediments: A Possible Indicator of Oxidized Terrestrial Organic Matter. Science, 201(4350), 49–51. DOI: https://doi.org/10.1126/science.201.4350.49
Pérez-Brunis, P., Furey, H., Bower, A., Hamilton, P., Candela, J. & García-Carrillo, P. 2018. Dominant Circulation Patterns of the Deep Gulf of Mexico. Journal of Physical Oceanography, 48, 511–529. DOI: https://doi.org/10.1175/JPO-D-17-0140.1
Pilon-Smits, E. A., Quinn, C. F., Tapken, W., Malagoli, M. & Schiavon, M. 2009. Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12(3), 267–274. https://doi.org/10.1016/j.pbi.2009.04.009
Repeta, D. J. & Simpson, D. J. 1991. The distribution and recycling of chlorophyll, bacteriochlorophyll and carotenoids in the Black Sea. Deep Sea Research Part A. Oceanographic Research Papers, 38, S969–S984. DOI: https://doi.org/10.1016/S0198-0149(10)80019-6
Roux, R. & Flores Torres, O. 2015. Los Hidrocarburos en el noreste de México. Available at: http://www.coltam.edu.mx/wp-content/uploads/2016/09/2015-HIDROCARBUROS-EN-EL-NORESTE-DE-MEXICO-.pdf. Access date: 2022 Aug.
Salas-Pérez, J. De J. & González-Gándara, C. 2016. Temporal and spatial fluctuations of sea surface temperature and chlorophyll a levels due to atmospheric forcing in a tropical coastal lagoon. Ciencias Marinas, 42(1), 49–65. DOI: https://doi.org/10.7773/
cm.v42i1.2551
Schwartz, S. & Von-Elbe, J. H. 1983. Kinetics Of Chlorophyll Degradation to Pyropheophytin in Vegetables. Journal of Food Science, 48, 1303–1306. DOI: https://doi.org/10.1111/j.1365-2621.1983.tb09216.x
Siegel, S. 1990. Estadística no paramétrica: aplicada a las ciencias de la conducta. Editorial México: Trillas. Spier, C., Stringfellow, W. T., Hazen, T. C. & Conrad, M. 2013. Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters. Environmental Pollution, 173, 224–230. DOI: https://doi.org/10.1016/j.envpol.2012.10.019
Szymczak-Żyła, M. & Kowalewska, G. 2007. Chloropigments a in the Gulf of Gdańsk (Baltic Sea) as markers of the state of this environment. Marine Pollution Bulletin, 55(10–12), 512–528. DOI: https://doi.org/10.1016/j.marpolbul.2007.09.013
USEPA (United States Environmental Protection Agency). 2009. Ecological Toxicity Information. Available at: www.epa.gov/region5/superfund/ecology/html/toxprofiles.htm. Access date: 2022 Jun. 1.
Vidal, V. M. & Vidal, F. V. 1997. La importancia de los estudios regionales de circulación oceánica en el Golfo de México. Revista de la Sociedad Mexicana de Historia Natural, 47: 191–200.
Vidussi, F., Claustre, H., Bustillos-Guzmán, J., Cailliau, C. & Marty, J. C. 1996. Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll-a from divinylchlorophyll-a and zeaxanthin from lutein. Journal of Plankton Research, 18(12), 2377–2382. DOI: https://doi.org/10.1093/plankt/18.12.2377
Xue, Z., He, R., Fennel, K., Cai, W. J., Lohrenz, S. & Hopkinson, C. 2013. Modeling ocean circulation and biogeochemical variability in the Gulf of Mexico. Biogeosciences, 10(11), 7219–7234. DOI: https://doi.org/10.5194/bg-10-7219-2013
Ye, K.-X., Fan, T.-T., Keen, L. J. & Han, B.-N. 2019. A Review of pigments derived from marine natural products. Israel Journal of Chemistry, 59, 327–338. DOI: https://doi.org/10.1002/ijch.201800154
Yentsch, C. S. 1965. Distribution of chlorophyll and phaeophytin in the open ocean. Deep Sea Research and Oceanographic Abstracts, 12(5), 653–666. DOI: https://doi.org/10.1016/0011-7471(65)91864-4
Zavala-Hidalgo, J., Gallegos-García, A., Martínez-López, B., Morey, S. L. & O’brien, J. J. 2006. Seasonal upwelling on the Western and Southern Shelves of the Gulf of Mexico. Ocean Dynamics, 56(3–4), 333–338. DOI: https://doi.org/10.1007/s10236-006-0072-3
Zavala-Hidalgo, J., Morey, S. L. & O’brien, J. J. 2003. Seasonal circulation on the western shelf of the Gulf of Mexico using a high-resolution numerical model. Journal of Geophysical Research, 108(C12), 3389. DOI: https://doi.org/10.1029/2003JC001879
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alejandro Estradas-Romero, Luis A. Soto, Lucía Álvarez-Castillo

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.
