First determination of photosynthetic pigments in surface sediments from the continental shelf and slope of the northwestern Gulf of Mexico

Authors

DOI:

https://doi.org/10.1590/2675-2824073.23175

Keywords:

Photopigments, HPLC, Chlorophylls, Carotenoids, Sedimentary pigment

Abstract

Marine pigments are more commonly used in food, pharmaceuticals, aquaculture and cosmetics industries. Marine pigments have a significant economic importance, constituting a multimillion-dollar industry that is still growing. Considering this, we decided to conduct a descriptive study of the photosynthetic pigments in surface sediments from the continental shelf and slope of 14 sites located in the northwestern Gulf of Mexico, obtained during October-November 2012. These pigments were analyzed using high-performance liquid chromatography. At least one pigment was detected in 10 of the samples examined, and a total of six pigments were identified, including three photosynthetic pigments and three chlorophyll-a degradation products: pheophorbide-a, pyrophaeophytin-a and phaeophytin-a. The pigments with the highest concentration were β-carotene and pheophorbide-a. Significant pigment concentrations were observed in inshore areas exposed to the influence of river discharge (Bravo and Soto La Marina) and Laguna Madre. The pigment composition and concentration were influenced by depth, temperature, salinity, and nickel concentration. Finally, a correlation between Ni, an indirect hydrocarbon contaminant marker, and pigment concentrations was observed. A deeper understanding of marine pigments certainly will fuel advances in biotechnology and bioengineering. We find it crucial to recognize the interactions between marine pigments and other ecosystem components. Despite pigment diversity, exploration in this field is still in its first stages, with many marine compounds awaiting further exploration. 

Downloads

Download data is not yet available.

References

Anderson, M. J., Gorley, R. N. & Clarke, K. R. 2008. PERMANOVA for PRIMER: Guide to Software and Statistical Methods. PRIMER-E Ltd, Plymouth, U.K. (214 pp).

Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32–46. DOI: http://dx.doi.org/10.1111/j.1442-993.2001.01070.pp.x

Ayala-Castañares, A., Cruz, R., García-Cubas, A. & Segura, L. R. 1996. Síntesis de los conocimientos sobre la Geología Marina de la Laguna de Tamiahua, Veracruz, México. In: AYALA-CASTAÑARES, A. & PHLEGER, F. B. (Ed). Lagunas Costeras, un Simposio. Memorias del Simposio Internacional sobre Lagunas Costeras: Origen, Dinámica y Productividad (pp. 39-48). Ciudad de México, DF: UNAM-UNESCO.

Beyer, J., Trannum, H. C., Bakke, T., Hodson, P. V. & Collier, T. K. 2016. Environmental effects of the Deepwater Horizon oil spill: A review. Marine Pollution Bulletin, 110(1), 28–51. DOI: https://doi.org/10.1016/j.marpolbul.2016.06.027

Bianchi, T. S., Johansson, B. & Elmgren, R. 2000. Breakdown of phytoplankton pigments in Baltic sediments: effects of anoxia and loss of deposit-feeding macrofauna. Journal of Experimental Marine Biology and Ecology, 251(2), 161–183. DOI: https://doi.org/10.1016/S0022-0981(00)00212-4

Biggs, D. C. 1992. Nutrients, plankton, and productivity in a warm-core ring in the western Gulf of Mexico. Journal of Geophysical Research, 97(C2), 2143. DOI: https://doi.org/10.1029/90JC02020

Botello, A. V. (Ed.). 2005. Golfo de México: contaminación e impacto ambiental: diagnóstico y tendencias. Universidad Juárez Autónoma de Tabasco.

Botello, A. V., Soto, L. A., Ponce-Vélez, G. & Villanueva F., S. 2015. Baseline for PAHs and metals in NW Gulf of Mexico related to the Deepwater Horizon oil spill. Estuarine, Coastal and Shelf Science, 156, 124–133. DOI: https://doi.org/10.1016/j.ecss.2014.11.010

Buchaca, T. & Catalan, J. 2007. Factors influencing the variability of pigments in surface sediments of mountain lakes. Freshwater Biology, 52, 1365–1379. DOI: https://doi.org/10.1111/j.1365-2427.2007.01774.x

Camilli, R., Reddy, C. M., Yoerger, D. R., Van Mooy, B. A. S., Jakuba, M. V., Kinsey, J. C., Mcintyre, C. P., Sylva, S. P. & MALONEY, J. V. 2010. Tracking Hydrocarbon Plume Transport and Biodegradation at Deepwater Horizon. Science, 330(6001), 201–204. DOI: https://doi.org//10.1126/science.1195223

Clarke, K. R. & Warwick, R. M. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth: Plymouth Marine Laboratory.Contreras, E. F. 1988. Las Lagunas Costeras Mexicanas. Ciudad de México: Secretaria de Pesca.

Delgado-Blas, V. H. 2001. Distribución espacial y temporal de poliquetos (Polychaeta) bénticos de la plataforma continental de Tamaulipas, Golfo de México.

Revista Biología Tropical, 49, 141–147. Available at: https://www.scielo.sa.cr/scielo.php?pid=S0034-77442001000100013&script=sci_abstract&tlng=es. Access date: 2022 Sep. 20.

Diercks, A. R., Highsmith, R. C., Asper, V. L., Joung, D., Zhou, Z., Guo, L., Shiller, A. M., Joye, S. B., Teske, A. P., Guinasso, N., Wade, T. L. & Lohrenz, S. E. 2010. Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site: Subsurface

Pah At Deepwater Horizon Site. Geophysical Research Letters, 37(20). DOI: https://doi.org/10.1029/2010GL045046

Dubranna, J., Pérez-Brunius, P., López, M. & Candela, J. 2011. Circulation over the continental shelf of the western and southwestern Gulf of Mexico. Journal of Geophysical Research, 116(C8), C08009. DOI: https://doi.org/10.1029/2011JC007007

Fabiano, M. & Danovaro, R. 1994. Composition of organic matter in sediments facing a river estuary (Tyrrhenian Sea): relationships with bacteria and microphytobenthic biomass. Hydrobiologia, 277, 71–84. DOI: https://doi.org/10.1007/BF00016755

Fernández-Eguiarte, A., Zavala, J. & Romero, R. 1998. Circulación de invierno en la Plataforma de Tamaulipas y áreas adyacentes. IX Reunión Nacional SELPERMéxico. Available at: https://www.scienceopen. Photopigments in sediments (Gulf of Mexico) Ocean and Coastal Research 2025, v73:e25008 11 Estradas-Romero et al. com/document?vid=b7d5d818-e55f-4012-a51b2f529ac22dec. Access date: 2022 Sep 20.

Gajewska, E., Skłodowska, M., Słaba, M. & Mazur, J. 2006. Effect of nickel on antioxidative enzyme activities, proline, and chlorophyll contents in wheat shoots. Biologia Plantarum, 50(4), 653–659. DOI: https://doi.org/10.1007/s10535-006-0102-5

Gerendás, J., Polacco, J. C., Freyermuth, S. K. & Sattelmacher, B. 1999. Significance of nickel for plant growth and metabolism. Journal of Plant Nutrition and Soil Science, 162(3), 241–256. DOI: https://doi.org/10.1002/SICI)1522-2624(199906)162:3<241:AIDJPLN241>3.0.CO;2-Q

Guerrero, F., Rodríguez, V., Bautista, B. & JiménezGómez, F. 1988. Procesos de formación y pérdida de feopigmentos en sistemas pelágicos: evaluación en condiciones de laboratorio. Investigación Pesquera, 52, 437–449.

Hamilton, P., Fargion, G. S. & Biggs, D. C. 1999. Loop Current Eddy paths in the Western Gulf of Mexico. Journal of Physical Oceanography, 29, 1180–1207. DOI: https://doi.org/10.1175/1520-0485(1999)029<1180: LCEPIT>2.0.CO;2

Hamilton, P. 2009. Topographic Rossby waves in the Gulf of Mexico. Progress in Oceanography, 82(1), 1–31. DOI: https://doi.org/10.1016/j.pocean.2009.04.019

Hamilton, P., Berger, T. J. & Johnson, W. 2002. On the structure and motions of cyclones in the northern Gulf of Mexico: Cyclones in the Northern Gulf of Mexico. Journal of Geophysical Research: Oceans, 107(C12), 1–18. DOI: https://doi.org/10.1029/1999JC000270

Hammer, Ø., Harper, D. A. T. & Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1–9.

Heaton, J. W. & Marangoni, A. G. 1996. Chlorophyll degradation in processed foods and senescent plant tissues. Trends in Food Science & Technology, 7(1), 8–15. DOI: https://doi.org/10.1016/0924-2244(96)81352-5

Herbland, A. 1988. The Deep Phaeopigments Maximum in the Ocean: Reality or Illusion? In: ROTHSCHILD, B. J. (Ed.). Toward a Theory on Biological-Physical Interactions in the World Ocean (pp. 157–172). Dordrecht: Springer.

Hu, C., Weisberg, R. H., Liu, Y., Zheng, L., Daly, K. L., English, D. C., Zhao, J. & Vargo, G. A. 2011. Did the northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill? Geophysical Research Letters, 38(9), 2011GL047184. DOI: https://doi.org/10.1029/2011GL047184

Jeffrey, S. W. & Vest, M. 1997. Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey, S. W., Mantoura, R. F. C. & Wright, S. W. (Ed.). Phytoplankton Pigments in Oceanography (pp. 37–84). Paris: Unesco.

Jeffrey, S. W., Wright, S. W. & Zapata, M. 1999. Recent advances in HPLC pigment analysis of phytoplankton. Marine and Freshwater Research, 50, 879–896. DOI: https://doi.org/10.1071/MF99109.

Kowalewska, G. & Konat, J. 1997. Distribution of polynuclear aromatic hydrocarbons (PAHs) in sediments of the southern Baltic Sea. Oceanologia, 39(1), 83–104.

Kowalewska, G. 1994. Steryl chlorin esters in sediments of the southern Baltic Sea. Netherlands Journal of Aquatic Ecology, 28(2), 149–156. DOI: https://doi.org/10.1007/BF02333985

Kowalewska, G. 2005. Algal pigments in sediments as a measure of eutrophication in the Baltic environment. Quaternary International, 130(1), 141–151. DOI: https://doi.org/10.1016/j.quaint.2004.04.037

Kowalewska. G., Witkowski, A. & Toma, B. 1996. Chlorophylls c in bottom sediments as markers of diatom biomass in the southern Baltic Sea. Oceanologia, 38(2), 227–249.

Küpper, H., Seibert, S. & Parameswaran, A. (2007). Fast, sensitive, and inexpensive alternative to analytical pigment HPLC: quantification of chlorophylls and carotenoids in crude extracts by fitting with Gauss peak spectra. Analytical Chemistry, 79(20), 7611–7627.

Laneve, G., Bruno, M., Mukherjee, A., Messineo, V., Giuseppetti, R., De Pace, R. & D’ugo, E. 2021. Remote sensing detection of algal blooms in a lake impacted by petroleum hydrocarbons. Remote Sensing, 14(1), 121. DOI: https://doi.org/10.3390/rs14010121

Liu, Q., Zhou, L., Liu, F., Fortin, C., Tan, Y., Huang, L. & Campbell, P. G. 2019. Uptake and subcellular distribution of aluminum in a marine diatom. Ecotoxicology and Environmental Safety, 169, 85–92. https://doi.org/10.1016/j.ecoenv.2018.10.095

Liu, Y., Weisberg, R. H., Hu, C. & Zheng, L. 2011. Tracking the Deepwater Horizon Oil Spill: A Modeling Perspective. EOS, Transactions American Geophysical Union, 92(6), 45–46. DOI: https://doi.org/10.1029/2011EO060001

Macías-Zamora, J. V., Villaescusa-Celaya, J. A., Muñoz-Barbosa, A. & Gold-Bouchot, G. 1999. Trace metals in sediment cores from the Campeche shelf, Gulf of Mexico. Environmental Pollution, 104(1), 69–77. DOI: https://doi.org/10.1016/S0269-7491(98)00153-5

Martínez-López, B. & Zavala-Hidalgo, J. 2009. Seasonal and interannual variability of cross-shelf transports of chlorophyll in the Gulf of Mexico. Journal of Marine Systems, 77, 1–20. DOI: https://doi.org/10.1016/j.jmarsys.2008.10.002

Megharaj, M., Singleton, I., Mcclure, N. C. & Naidu, R. 2000. Influence of Petroleum Hydrocarbon Contamination on Microalgae and Microbial Activities in a Long-Term Contaminated Soil. Archives of Environmental Contamination and Toxicology, 38(4), 439–445. DOI: https://doi.org/10.1007/s002449910058

Meza‐Padilla, R., Enriquez, C., Liu, Y. & Appendini, C. M. 2019. Ocean circulation in the western Gulf of Mexico using self‐organizing maps. Journal of Geophysical Research Oceans, 124, 4152–4167. DOI: https://doi.org/10.1029/2018JC014377

Nelson, J. R. 1993. Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton. Journal of Marine Research, 51(1), 155–179. DOI: https://doi.org/10.1357/0022240933223837

Othman, H. B., Pick, F. R., Hlaili, A. S. & Leboulanger, C. (2023). Effects of polycyclic aromatic hydrocarbons on marine and freshwater microalgae–A review. Journal of Hazardous Materials, 441, 129869. Photopigments in sediments (Gulf of Mexico) Ocean and Coastal Research 2025, v73:e25008 12 Estradas-Romero et al.

Palmer, S. E. & Baker, E. W. 1978. Copper Porphyrins in Deep-Sea Sediments: A Possible Indicator of Oxidized Terrestrial Organic Matter. Science, 201(4350), 49–51. DOI: https://doi.org/10.1126/science.201.4350.49

Pérez-Brunis, P., Furey, H., Bower, A., Hamilton, P., Candela, J. & García-Carrillo, P. 2018. Dominant Circulation Patterns of the Deep Gulf of Mexico. Journal of Physical Oceanography, 48, 511–529. DOI: https://doi.org/10.1175/JPO-D-17-0140.1

Pilon-Smits, E. A., Quinn, C. F., Tapken, W., Malagoli, M. & Schiavon, M. 2009. Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12(3), 267–274. https://doi.org/10.1016/j.pbi.2009.04.009

Repeta, D. J. & Simpson, D. J. 1991. The distribution and recycling of chlorophyll, bacteriochlorophyll and carotenoids in the Black Sea. Deep Sea Research Part A. Oceanographic Research Papers, 38, S969–S984. DOI: https://doi.org/10.1016/S0198-0149(10)80019-6

Roux, R. & Flores Torres, O. 2015. Los Hidrocarburos en el noreste de México. Available at: http://www.coltam.edu.mx/wp-content/uploads/2016/09/2015-HIDROCARBUROS-EN-EL-NORESTE-DE-MEXICO-.pdf. Access date: 2022 Aug.

Salas-Pérez, J. De J. & González-Gándara, C. 2016. Temporal and spatial fluctuations of sea surface temperature and chlorophyll a levels due to atmospheric forcing in a tropical coastal lagoon. Ciencias Marinas, 42(1), 49–65. DOI: https://doi.org/10.7773/

cm.v42i1.2551

Schwartz, S. & Von-Elbe, J. H. 1983. Kinetics Of Chlorophyll Degradation to Pyropheophytin in Vegetables. Journal of Food Science, 48, 1303–1306. DOI: https://doi.org/10.1111/j.1365-2621.1983.tb09216.x

Siegel, S. 1990. Estadística no paramétrica: aplicada a las ciencias de la conducta. Editorial México: Trillas. Spier, C., Stringfellow, W. T., Hazen, T. C. & Conrad, M. 2013. Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters. Environmental Pollution, 173, 224–230. DOI: https://doi.org/10.1016/j.envpol.2012.10.019

Szymczak-Żyła, M. & Kowalewska, G. 2007. Chloropigments a in the Gulf of Gdańsk (Baltic Sea) as markers of the state of this environment. Marine Pollution Bulletin, 55(10–12), 512–528. DOI: https://doi.org/10.1016/j.marpolbul.2007.09.013

USEPA (United States Environmental Protection Agency). 2009. Ecological Toxicity Information. Available at: www.epa.gov/region5/superfund/ecology/html/toxprofiles.htm. Access date: 2022 Jun. 1.

Vidal, V. M. & Vidal, F. V. 1997. La importancia de los estudios regionales de circulación oceánica en el Golfo de México. Revista de la Sociedad Mexicana de Historia Natural, 47: 191–200.

Vidussi, F., Claustre, H., Bustillos-Guzmán, J., Cailliau, C. & Marty, J. C. 1996. Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll-a from divinylchlorophyll-a and zeaxanthin from lutein. Journal of Plankton Research, 18(12), 2377–2382. DOI: https://doi.org/10.1093/plankt/18.12.2377

Xue, Z., He, R., Fennel, K., Cai, W. J., Lohrenz, S. & Hopkinson, C. 2013. Modeling ocean circulation and biogeochemical variability in the Gulf of Mexico. Biogeosciences, 10(11), 7219–7234. DOI: https://doi.org/10.5194/bg-10-7219-2013

Ye, K.-X., Fan, T.-T., Keen, L. J. & Han, B.-N. 2019. A Review of pigments derived from marine natural products. Israel Journal of Chemistry, 59, 327–338. DOI: https://doi.org/10.1002/ijch.201800154

Yentsch, C. S. 1965. Distribution of chlorophyll and phaeophytin in the open ocean. Deep Sea Research and Oceanographic Abstracts, 12(5), 653–666. DOI: https://doi.org/10.1016/0011-7471(65)91864-4

Zavala-Hidalgo, J., Gallegos-García, A., Martínez-López, B., Morey, S. L. & O’brien, J. J. 2006. Seasonal upwelling on the Western and Southern Shelves of the Gulf of Mexico. Ocean Dynamics, 56(3–4), 333–338. DOI: https://doi.org/10.1007/s10236-006-0072-3

Zavala-Hidalgo, J., Morey, S. L. & O’brien, J. J. 2003. Seasonal circulation on the western shelf of the Gulf of Mexico using a high-resolution numerical model. Journal of Geophysical Research, 108(C12), 3389. DOI: https://doi.org/10.1029/2003JC001879

Downloads

Published

04.04.2025

How to Cite

First determination of photosynthetic pigments in surface sediments from the continental shelf and slope of the northwestern Gulf of Mexico. (2025). Ocean and Coastal Research, 73, e25008. https://doi.org/10.1590/2675-2824073.23175