Shoreline behavior of beaches adjacent to bay inlet based on satellite imagery analysis
DOI:
https://doi.org/10.1590/2675-2824073.24073Keywords:
Cassie, Waterline, Beach sectorization, Change rate, Sand pulse, Headland bypassAbstract
The waterline position derived from publicly available satellite imagery has been an increasingly used method
to acquire high spatial-temporal scale and enough data to study shoreline behavior. In this study, to enhance
the understanding of shoreline behavior and evolution of beach systems adjacent to Babitonga bay inlet, SC,
Brazil, the CASSIE platform was used to generate ~40 years of satellite-derived waterline position data.
Shoreline behavior and evolution of these systems were investigated through Hovmoller diagram interpretation,
beach systems sectorization and shoreline change rate of the identified sectors. The Hovmoller diagram was
drawn up using the annual average shoreline position. The beach systems sectorization was made up with the
Hovmoller diagram interpretation allied to Hierarchical Clustering analysis. The shoreline change rate of each
sector was conducted for the average transect data that make up the sectors. Results revealed the occurrence
of sedimentary pulses on Enseada and Forte beaches, which starts at headland and propagates along Enseada
beach and Forte-Capri beach system. Also, significant erosion trends were identified on the border of Ponta
do Sumidouro and Forte beach, at second sector of Forte-Capri beach system, with Linear Regression Rate
(LRR) of –4.11 m/year (CI = ±0.59 m/year), at the second and third sector of Pontal-Itapoá beach system with
LRR of –1.61 m/year (CI = ±0.31 m/year) and –0.90 m/year (CI = ±0.18 m/year), respectively. The remaining
sectors embodying beach environments were classified as stable state.
Downloads
References
Abreu, J. J. de. 2011. Transporte sedimentar longitudinal e
morfodinâmica praial: Exemplo do litoral norte de Santa
Catarina (Doutorado em Geografia). Florianópolis:
Universidade Federal de Santa Catarina. Available from:
https://repositorio.ufsc.br/handle/123456789/103376.
Access date: 2024 Nov. 27.
Abreu de Castilhos, J. & Gré, J. C. R. 2006. Beach
morphodynamics and sediment transport along the
northern coast of Santa Catarina, Brazil. Journal of
Coastal Research, ICS 2004 (SI 39), 1756–1761.
Almeida, L. P., Efraim de Oliveira, I., Lyra, R., Dazzi, R. L. S.,
Martins, V. G. & Klein, A. H. da F. 2021. Coastal Analyst
System from Space Imagery Engine (CASSIE):
Shoreline management module. Environmental
Modelling & Software, 140(105033). DOI: https://doi.org/
1016/j.envsoft.2021.105033
Alves, J. H. G. de M. 1996. Refração do espectro de
ondas oceânicas em águas rasas: Aplicações a região
costeira de São Francisco do Sul, SC (Dissertação
de Mestrado em Ciências em Engenharia Ambiental).
Florianópolis: Universidade Federal de Santa Catarina.
Available from: http://repositorio.ufsc.br/xmlui/handle/
/76959. Access date: 2024 Nov. 27.
Angulo, R. J. & Souza, M. C. de. 2004. Geological map
of the coastal plain between the Saí-Guaçu river and
São Francisco bay, northern coast of the State of Santa
Catarina. Boletim Paranaense de Geociências, (55),
–23. DOI: http://dx.doi.org/10.5380/geo.v55i0.4280
Angulo, R. J., Souza, M. C. de & Lamour, M. R. 2006. Coastal
erosion problems induced by dredging activities in the
navigation channel of Paranaguá and São Francisco
do Sul harbor, Southern Brazil. Coastal Education and
Research Foundation, 3(39), 1801–1803. Available from:
https://www.jstor.org/stable/25743070. Access date:
Nov. 27.
Araujo, C. E. S. de, Franco, D., Melo, E. & Pimenta, F. M.
Wave regime characteristics of the Southern
Brazil. In: International Conference on Coastal and Port
Engineering in Developing Countries (pp. 1–15).
Bar-Joseph, Z., Gifford, D. K. & Jaakkola, T. S. 2001.
Fast optimal leaf ordering for hierarchical clustering.
Bioinformatics, 17(1), 22–29. DOI: https://doi.org/
1093/bioinformatics/17.suppl_1.S22
Bishop-Taylor, R., Nanson, R., Sagar, S. & Lymburner, L.
Mapping Australia’s dynamic coastline at mean
sea level using three decades of Landsat imagery.
Remote Sensing of Environment, 267(112734). DOI:
https://doi.org/10.1016/j.rse.2021.112734
Boak, E. H. & Turner, I. L. 2005. Shoreline definition and
detection: A review. Journal of Coastal Research, 21(4),
–703. DOI: https://doi.org/10.2112/03-0071.1
Burningham, H. & French, J. 2017. Understanding coastal
change using shoreline trend analysis supported
by cluster-based segmentation. Geomorphology,
, 131–149. DOI: https://doi.org/10.1016/
j.geomorph.2016.12.029
Camargo, J. M. de. 2020. Litoral do estado de Santa
Catarina, Brasil: promontórios rochosos, comportamento
da linha de costa e processo de transposição
sedimentar (Tese de Doutorado em Geografia).
Florianópolis: Universidade Federal de Santa
Catarina. Available from: https://repositorio.ufsc.br/
handle/123456789/219537. Access date: 2024 Nov. 27.
Castelle, B., Masselink, G., Scott, T., Konstantinou, A.,
Luijendijk, A. & Kras, E. 2023. Satellite-derived sandy
shoreline trends and interannual variability along the
Atlantic coast of Europe. Research Square [Preprint].
DOI: https://doi.org/10.21203/rs.3.rs-3696677/v1
Castelle, B., Ritz, A., Marieu, V., Lerma, A. N. &
Vandenhove, M. 2022. Primary drivers of
multidecadal spatial and temporal patterns of
shoreline change derived from optical satellite
imagery. Geomorphology, 413(108360). DOI:
https://doi.org/10.1016/j.geomorph.2022.108360
Costa, W. L. L., Silveira, L. F. & Klein, A. H. da F.
Influence of wave climate and tidal regime
on headland bypassing – study case: Northern
São Francisco do Sul Island, SC, Brazil (Tampa:
World Scientific). In: 9th International Conference
on Coastal Sediments 2019 (pp. 488–501). DOI:
https://doi.org/10.1142/9789811204487_0044
Dabees, M. & Kamphuis, J. W. 1998. Oneline, a
numerical model for shoreline change. Coastal
Engineering Proceedings. DOI: https://doi.org/10.1061/
202
Esteves, L. S. & Finkl, C. W. 1998. The problem of
Critically Eroded Areas (CEA): An evaluation of Florida
beaches. Journal of Coastal Research, (SI 26), 11–18.
Available from: https://www.jstor.org/stable/25736114.
Access date: 2024 Nov. 27.
Fenster, M. S. & Dominguez, R. 2022. Quantifying coastal
storm impacts using a new Cumulative Storm Impact
Index (CSII) model: Application along the Virginia coast,
USA. Journal of Geophysical Research: Earth Surface,
(9). DOI: https://doi.org/10.1029/2022JF006641
Fitzgerald, D. M. 1984. Interactions between the
ebb-tidal delta and landward shoreline: Price Inlet,
South Carolina. Journal of Sedimentary Research,
(4). DOI: https://doi.org/10.1306/212F85C6-2B24-
D7-8648000102C1865D
Fitzgerald, D. M. 1996. Geomorphic variability and
morphologic and sedimentologic controls on tidal
inlets. Journal of Coastal Research, (SI 23), 47-71.
Fitzgerald, D. M., Kraus, N. C. & Hands, E. B. 2000. Natural
mechanisms of sediment bypassing at tidal Inlets.
Coastal and Hydraulics Engineering Technical Note,
(30), 1–10.
Galvão, W. F. L., Klein, A. H. da F., Mahiques, M. M. de,
Hein, C. J., Sousa, L. A. P. de, Cooper, A. & Green, A.
Holocene barrier overstepping, estuarine rollover
Shoreline behavior based on satellite imagery analysis
Ocean and Coastal Research 2025, v73:e25004 18
Tomasi and Klein
and drainage merging in a sub-tropical bay. Marine
Geology, 462, 107076. DOI: https://doi.org/10.1016/
j.margeo.2023.107076
Genz, A. S., Fletcher, C. H., Dunn, R. A., Frazer, l. N. &
Rooney, J. J. 2007. The predictive accuracy of shoreline
change rate methods and alongshore beach variation
on Maui, Hawaii. Journal of Coastal Research, 231(1),
–105. DOI: https://doi.org/10.2112/05-0521.1
Hagenaars, G., de Vries, S., Luijendijk, A. P.,
Boer, W. P. de & Reniers, A. J. H. M. 2018. On the
accuracy of automated shoreline detection derived
from satellite imagery: A case study of the sand
motor mega-scale nourishment. Coastal Engineering,
, 113–125. DOI: https://doi.org/10.1016/
j.coastaleng.2017.12.011
Hanslow, D. J. 2007. Beach erosion trend measurement:
A comparison of trend indicators. Journal of Coastal
Research, (SI 50), 588–593. Available from:
https://www.jstor.org/stable/26481655. Access date:
Nov. 27.
Hanson, H. 1989. Genesis: A generalized shoreline
change numerical model. Journal of Coastal Research,
(1), 1–27. Available from: http://www.jstor.org/
stable/4297483. Access date: 2024 Nov. 27.
Hapke, C. J., Himmelstoss, E. A., Kratzmann, M. G.,
List, J. H. & Thieler, E. R. 2011. National assessment
of shoreline change; historical shoreline change
along the New England and Mid-Atlantic coasts
(Vol. 1118). Reston: U.S. Geological Survey. DOI:
https://doi.org/10.3133/ofr20101118
Horn Filho, N. O. 1997. O Quartenário costeiro da ilha
de São Francisco do Sul e arredores, nordeste do
Estado de Santa Catarina – aspectos geológicos,
evolutivos e ambientais (Tese de Doutorado em
Geociências). Porto Alegre: Universidade Federal do
Rio Grande do Sul. Available from: https://1drv.ms/
b/s!AsbEzjL1r71wiLNuARs7_kHhixni-A?e=L0jCz5
HovmÖller, E. 1949. The Trough-and-Ridge diagram.
Tellus, 1(2), 62–66. DOI: https://doi.org/10.3402/
tellusa.v1i2.8498
Klein, A. H. da F. 2023. Relatório Final – Projeto RiskPorts.
Florianópolis: Universidade Federal de Santa
Catarina. Available from: https://riscport.paginas.
ufsc.br/files/2023/12/20230929_RELATORIOFINAL_
RISKPORTS-2.pdf. Access date: 2024 Nov. 27.
Klein, A. H. da F., Almeida, L. P. M. de, Filippi, B., Pinto, M. W.,
Galvão, W. F. L., Costa, W. L. L., Dalinghaus, C. &
Prado, M. F. V. 2022. Relatório técnico: Subida do nível
do mar e a Babitonga: uma abordagem ecomorfodinamica para prever e mitigar impactos.
Florianópolis: Projeto Bay Squeeze. Availabe from:
https://baysqueeze.paginas.ufsc.br/files/2020/04/
_03_24_Relatorio_Final_Baia.pdf
Klein, A. H. da F., Short, A. D. & Bonetti, J. 2016.
Santa Catarina Beach Systems. In: Klein, A. H. da F. &
Short, A. D. (Eds.). Brazilian beach systems
(pp. 465–506). Cham: Springer. DOI: https://doi.org/
1007/978-3-319-30394-9_17
Klein, A. H. da F., Silva, G. V. da, Taborda, R.,
Silva, A. P. da & Short, A. D. 2020. Headland bypassing
and overpassing: Form, processes and applications.
In: Jackson, W. T. & Short, A. D. (Eds.). Sandy Beach
Morphodynamics (pp. 557–591). Elsevier. DOI:
https://doi.org/10.1016/B978-0-08-102927-5.00023-0
Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F.,
Donchyts, G. & Aarninkhof, S. 2018. The state of the
world’s beaches. Scientific Reports, 8(6641). DOI:
https://doi.org/https://doi.org/10.1038/s41598-018-24630-6
Mentaschi, L., Vousdoukas, M. I., Pekel, J. F.,
Voukouvalas, E. & Feyen, L. 2018. Global long-term
observations of coastal erosion and accretion.
Scientific Reports, 8(12876), 1–11. DOI: https://doi.org/
1038/s41598-018-30904-w
Noernberg, M. A., Rodrigo, P. A., Luersen, D. M. 2020.
Seasonal and fortnightly variability of the hydrodynamic
regime at Babitonga Bay, Southern of Brazil.
Regional Studies in Marine Science, 40, 101518. DOI:
https://doi.org/10.1016/j.rsma.2020.101518
Otsu, N. 1979. A threshold selection method from gray-level
histograms. IEEE Transaction on Systems, Man and
Cybernetics, 9(1), 62–66. DOI: https://doi.org/10.1109/
TSMC.1979.4310076
Pulling, M. C. 2023. Evolução morfológica da desembocadura
da baía da Babitonga, Santa Catarina (Dissertação
de Mestrado em Oceanografia). Florianópolis:
Universidade Federal de Santa Catarina.
Ranasinghe, R., McLoughlin, R., Short, A. & Symonds, G.
The Southern Oscillation Index, wave climate,
and beach rotation. Marine Geology, 204(3–4), 273–287.
DOI: https://doi.org/10.1016/S0025-3227(04)00002-7
Ribeiro, M. S. A. 2017. Headland sediment bypassing
processes (Tese de Doutoramento em Geologia).
Lisboa: Universidade de Lisboa. Available from:
https://repositorio.ul.pt/handle/10451/30262. Access date:
Nov. 27.
Short, A. D. 2000. Handbook of Beach and Shoreface
Morphodynamics. Chichester: John Wiley & Sons.
Short, A. D. & Trembanis, A. C. 2004. Decadal scale
patterns in beach oscillation and rotation Narrabeen
beach, Australia-time series, PCA and wavelet analysis.
Journal of Coastal Research, 20(2), 523–532. DOI:
https://doi.org/10.2112/1551-5036(2004)020[0523:DSP
IBO]2.0.CO;2
Silva, A. P. da, Silva, G. V. da, Strauss, D.,
Murray, T., Woortmann, L. G., Taber, J., Cartwright, N. &
Tomlinson, R. 2021. Headland bypassing timescales:
Processes and driving forces. Science of the Total
Environment, 793, 148591. DOI: https://doi.org/
1016/j.scitotenv.2021.148591
Silva, G. V. da, Muler, M., Prado, M. F. V., Short, A. D.,
Klein, A. H. da F. & Toldo, E. E. 2016. Shoreline
change analysis and insight into the sediment transport
path along Santa Catarina Island north shore, Brazil.
Journal of Coastal Research, 32(4), 863–874. DOI:
https://doi.org/10.2112/JCOASTRES-D-15-00164.1
Silveira, L. F. da, Benedet, L., Signorin, M. &
Bonanata, R. 2012. Evaluation of the relationships
between navigation channel dredging and erosion
of adjacent beaches in southern Brazil. Coastal
Engineering Proceedings, 1(33). DOI: https://doi.org/
9753/icce.v33.sediment.106
Souza, M. C. de. 1999. Mapeamento da planície costeira
e morfologia e dinâmica das praias do município de
Itapoá, Estado de Santa Catarina: Subsídios à ocupação
Shoreline behavior based on satellite imagery analysis
Ocean and Coastal Research 2025, v73:e25004 19
Tomasi and Klein
(Dissertação de Mestrado em Geologia). Curitiba:
Universidade Federal do Paraná. Available from: https://
acervodigital.ufpr.br/handle/1884/6581. Access date:
Nov. 27.
Souza, M. C. de. 2001. Evolução paleogeográfica da
planície costeira de Itapoá, litoral norte de Santa
Catarina. Revista Brasileira de Geociências, 31(2),
–230.
Souza, M. C. de & Angulo, R. J. 2003. Decadal and
inter-annual variations of shoreline and beach
volumes in Itapoá (Santa Catarina, Brazil). Journal of
Coastal Research, (SI 35), 202–208. Available from:
https://www.jstor.org/stable/40928762. Access date:
Nov. 27.
Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L. &
Ergul, A. 2009. The Digital Shoreline Analysis System
(DSAS) Version 4.0 – An ArcGIS extension for
calculating shoreline change. Reston: U. S. Geological
Survey. DOI: https://doi.org/10.3133/ofr20081278
Tomasi, M. F. Babitonga bay inlet shorelines and
adjacent beaches. 2024. Mendeley Data, v. 1. 2024.
DOI: 10.17632/4m9whvxp8z.1
Truccolo, E. C. 1998. Maré meteorológica e forçantes
atmosféricas locais em São Francisco do Sul – SC
(Dissertação de Mestrado em Engenharia Ambiental).
Florianópolis: Universidade Federal de Santa Catarina.
Available from: http://repositorio.ufsc.br/xmlui/handle/
/77725. Access date: 2024 Nov. 27.
Truccolo, E. C. & Schettini, C. A. 1999. Marés astronômicas
na baía da Babitonga, SC. Brazilian Journal of Aquatic
Science and Technology, 3(1), 57–66. Available from:
https://periodicos.univali.br/index.php/bjast/issue/view/168.
Access date: 2024 Nov. 27.
Valverde, M. de F. M. M. 2023. Sediment budget estimation
using historic cartography: Application to Figueira
da Foz coast with 19th and 20th centuries shorelines
(Exame de qualificação Doutorando em Geologia).
Lisboa: Universidade de Lisboa.
Vitousek, S., Buscombe, D., Vos, K., Barnard, P. L.,
Ritchie, A. C. & Warrick, J. A. 2023. The future of
coastal monitoring through satellite remote sensing.
Cambridge Prisms: Coastal Futures, 1, 1-18. DOI:
https://doi.org/10.1017/cft.2022.4
Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A. &
Turner, I. L. 2019. Sub-annual to multi-decadal shoreline
variability from publicly available satellite imagery.
Coastal Engineering, 150, 160–174. DOI: https://doi.
org/10.1016/j.coastaleng.2019.04.004
Vos, K., Harley, M. D., Splinter, K. D., Walker, A. &
Turner, I. L. 2020. Beach slopes from Satellite‐Derived
Shorelines. Geophysical Research Letters, 47(14),
-10. DOI: https://doi.org/10.1029/2020GL088365
Vos, K., Harley, M. D., Turner, I. L. & Splinter, K. D. 2023.
Pacific shoreline erosion and accretion patterns
controlled by El Niño/Southern Oscillation. Nature
Geoscience, 16(2), 140–146. DOI: https://doi.org/
1038/s41561-022-01117-8
Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A. &
Turner, I. L. 2019. CoastSat: A Google Earth Engineenabled Python toolkit to extract shorelines from
publicly available satellite imagery. Environmental
Modelling and Software, 122(104528). DOI:
https://doi.org/10.1016/j.envsoft.2019.104528
Vos, K., Splinter, K. D., Palomar-Vázquez, J., PardoPascual, J. E., Almonacid-Caballer, J., CabezasRabadán, C., Kras, E. C., Luijendijk, A. P., Calkoen, F.,
Almeida, L. P., Pais, D., Klein, A. H. F., Mao, Y., Harris,
D., Castelle, B., Buscombe, D. & Vitousek, S. 2023.
Benchmarking satellite-derived shoreline mapping
algorithms. Communications Earth and Environment,
(345), 1-17. DOI: https://doi.org/10.1038/s43247-023-
-2
Vousdoukas, M. I., Ranasinghe, R., Mentaschi, L.,
Plomaritis, T. A., Athanasiou, P., Luijendijk, A. &
Feyen, L. 2020. Sandy coastlines under threat of
erosion. Nature Climate Change, 10(3), 260–263.
DOI: https://doi.org/10.1038/s41558-020-0697-0
Warrick, J. A., Vos, K., Buscombe, D., Ritchie, A. C. &
Curtis, J. A. 2023. A large sediment accretion wave
along a northern California littoral cell. Journal of
Geophysical Research: Earth Surface, 128(7), 1-29.
DOI: https://doi.org/10.1029/2023JF007135
Wilks, D. S. 2011. Cluster Analysis. In: Wilks, D. S. (Ed.).
Statistical methods in the atmospheric sciences
(pp. 603-616). Amsterdã: Elsevier. DOI: http://dx.doi.
org/10.1016/B978-0-12-385022-5.00015-4
Zhang, X., Wu, C., Zhang, Y., Hu, R. & Yang, Z. 2022. Using
free satellite imagery to study the long-term evolution
of intertidal bar systems. Coastal Engineering,
, 104123. DOI: https://doi.org/10.1016/j.
coastaleng.2022.104123
Zhang, X., Wu, C., Hu, R., Xu, S., Xu, Z. & Yang, Z.
Can satellite-derived beach images resolve
the responses to human activities? Journal of
Geophysical Research: Earth Surface, 129(2). DOI:
https://doi. org/10.1029/2023JF007339
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Marcos Felipe Tomasi, Antonio Henrique da Fontoura Klein

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.
