Comparative analysis of three key atmospheric correction techniques for bathymetric mapping in nearshore areas with Sentinel-2 Data - case study: Kish Island, Persian Gulf

Authors

  • Keivan Kabiri

DOI:

https://doi.org/10.1590/2675-2824073.24077

Keywords:

Satellite derived bathymetry (SDB), Coastal mapping, Remote sensing, Depth estimation

Abstract

This study addresses the critical need for accurate bathymetric data in coastal and nearshore zones, which
are essential for ecological balance and resource management. Traditional depth measurement methods
are costly, labor-intensive, and spatially limited, further complicated by environmental factors. Remote sensing
technologies, particularly the Sentinel-2 satellite imagery, offer a promising solution for efficient and extensive
data acquisition. This research evaluates the impact of three atmospheric correction (AC) methods—FLAASH,
Sen2Cor, and ACOLITE—on depth estimation accuracy using Sentinel-2 imagery over Kish Island, a biodiverse
coral reef habitat in the Persian Gulf. Field measurements at 932 points around the island were used to train
and test the performance of the AC methods. An integrated linear and ratio transformation model, utilizing green
and blue bands of Sentinel-2, was applied to derive depth values. Statistical analyses, including the coefficient
of determination (R²), root-mean-square error (RMSE), and mean absolute percentage error (MAPE), indicate
that ACOLITE consistently outperforms the other methods, achieving R² values often exceeding 0.8, the lowest
RMSE values of ~ 1.41 m, and a MAPE of ~ 41.56%. In contrast, Sen2Cor exhibits greater variability, with an
R² of up to 0.78 and an RMSE of up to 1.75 m and MAPE of 47.10%, while FLAASH offers stable but less
precise performance, with R² values ~ 0.74, RMSE ranging from 1.70 m to 1.91 m, and MAPE up to 50.26%.
Thus, ACOLITE emerges as the most accurate and reliable method for atmospheric correction, enhancing the
accuracy of bathymetric data and aiding the conservation and management of coastal environments.

Downloads

Download data is not yet available.

References

Apostolopoulos, D. & Nikolakopoulos, K. 2021. A review and

meta-analysis of remote sensing data, GIS methods,

materials and indices used for monitoring the coastline

evolution over the last twenty years. European Journal of

Remote Sensing, 54(1), 240–265. DOI: https://doi.org/

1080/22797254.2021.1904293

Ashphaq, M., Srivastava, P. K. & Mitra, D. 2021. Review of

near-shore satellite derived bathymetry: Classification

and account of five decades of coastal bathymetry

research. Journal of Ocean Engineering and

Science, 6(4), 340–359. DOI: https://doi.org/10.1016/

j.joes.2021.02.006

Beni, A. N., Marriner, N., Sharifi, A., Azizpour, J.,

Kabiri, K., Djamali, M. & Kirman, A. 2021. Climate

change: A driver of future conflicts in the Persian Gulf

Region? Heliyon, 7(2), 1–18. DOI: https://doi.org/

1016/j.heliyon.2021.e06288

Brown, C. J. & Collier, J. S. 2008. Mapping benthic habitat

in regions of gradational substrata: an automated

approach utilising geophysical, geological, and

biological relationships. Estuarine, Coastal and Shelf

Science, 78(1), 203–214. DOI: https://doi.org/10.1016/

j.ecss.2007.11.026

Caballero, I. & Stumpf, R. P. 2019. Retrieval of nearshore

bathymetry from Sentinel-2A and 2B satellites in South

Florida coastal waters. Estuarine, Coastal and Shelf

Science, 226, 1-12. DOI: https://doi.org/10.1016/

j.ecss.2019.106277

Caballero, I. & Stumpf, R. P. 2020. Atmospheric correction

for satellite-derived bathymetry in the Caribbean waters:

From a single image to multi-temporal approaches

using Sentinel-2A/B. Optics Express, 28(8), 11742–

DOI: https://doi.org/10.1364/oe.390316

Casal, G., Hedley, J. D., Monteys, X., Harris, P., Cahalane, C. &

McCarthy, T. 2020. Satellite-derived bathymetry in

optically complex waters using a model inversion

approach and Sentinel-2 data. Estuarine, Coastal

and Shelf Science, 241, e106814. DOI: https://doi.org/

1016/j.ecss.2020.106814

Casal, G., Monteys, X., Hedley, J., Harris, P., Cahalane, C. &

McCarthy, T. 2019. Assessment of empirical

algorithms for bathymetry extraction using Sentinel-2

data. International Journal of Remote Sensing, 40(8),

–2879. DOI: https://doi.org/10.1080/01431161.

1533660

Castillo-López, E., Dominguez, J. A., Pereda, R., de Luis, J. M.,

Pérez, R. & Piña, F. 2017. The importance of

atmospheric correction for airborne hyperspectral

remote sensing of shallow waters: application to

depth estimation. Atmospheric Measurement

Techniques, 10(10), 3919–3929. DOI: https://doi.org/

5194/amt-10-3919-2017

De Keukelaere, L., Sterckx, S., Adriaensen, S., Knaeps, E.,

Reusen, I., Giardino, C., Bresciani P. H., Neil, C.,

Van der Zande, D. & Vaiciute, D. 2018. Atmospheric

correction of Landsat-8/OLI and Sentinel-2/MSI data

using iCOR algorithm: validation for coastal and

inland waters. European Journal of Remote Sensing,

(1), 525–542. DOI: https://doi.org/10.1080/22797254.

1457937

Duan, Z., Chu, S., Cheng, L., Ji, C., Li, M. & Shen, W.

Satellite-derived bathymetry using Landsat-8

and Sentinel-2A images: Assessment of atmospheric

correction algorithms and depth derivation models in

Atmospheric correction effects on depth estimation

Ocean and Coastal Research 2025, v73:e25015 11

Keivan Kabiri

shallow waters. Optics Express, 30(3), 3238–3261.

DOI: https://doi.org/10.1364/oe.444557

Eugenio, F., Marcello, J. & Martin, J. 2015. High-resolution

maps of bathymetry and benthic habitats in shallowwater environments using multispectral remote

sensing imagery. IEEE Transactions on Geoscience

and Remote Sensing, 53(7), 3539–3549. DOI:

https://doi.org/10.1109/TGRS.2014.2377300

Evagorou, E., Mettas, C., Agapiou, A., Themistocleous, K. &

Hadjimitsis, D. 2019. Bathymetric maps from multitemporal analysis of Sentinel-2 data: the case study of

Limassol, Cyprus. Advances in Geosciences, 45, 397–407.

DOI: https://doi.org/10.5194/adgeo-45-397-2019

Frantz, D., Haß, E., Uhl, A., Stoffels, J. & Hill, J. 2018.

Improvement of the Fmask algorithm for Sentinel-2

images: Separating clouds from bright surfaces

based on parallax effects. Remote sensing of

environment, 215, 471–481. DOI: https://doi.org/

1016/j.rse.2018.04.046

Gascon, F., Bouzinac, C., Thépaut, O., Jung, M.,

Francesconi, B., Louis, J., Lonjou, V., Lafrance, B,

Massera, S, Gaudel-Vacaresse, A, Languille, F.,

Alhammoud, B., Viallefont, F., Pflug, B.,

Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T.,

Cadau, E., de Bonis, R., Isola, C., Martimort, P. &

Fernandez, V. 2017. Copernicus Sentinel-2A calibration

and products validation status. Remote Sensing,

(6), 1–81. DOI: https://doi.org/10.3390/rs9060584

Hedley, J. D., Roelfsema, C., Brando, V., Giardino, C.,

Kutser, T., Phinn, S., Mumby, P. J., Barrilero, O.,

Laporte, J. & Koetz, B. 2018. Coral reef applications

of Sentinel-2: Coverage, characteristics, bathymetry

and benthic mapping with comparison to Landsat 8.

Remote sensing of environment, 216, 598–614. DOI:

https://doi.org/10.1016/j.rse.2018.07.014

Jones, R., Pineda, M. C., Luter, H. M., Fisher, R., Francis, D.,

Klonowski, W. & Slivkoff, M. 2021. Underwater light

characteristics of turbid coral reefs of the inner central

great barrier reef. Frontiers in Marine Science, 8,

–22. DOI: https://doi.org/10.3389/fmars.2021.727206

Kabiri, K. 2017a. Discovering optimum method to extract

depth information for nearshore coastal waters from

Sentinel-2A imagery-case study: Nayband Bay,

Iran. The International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences,

, 105–110. DOI: https://doi.org/10.5194/isprs-archivesXLII-4-W4-105-2017

Kabiri, K. 2017b. Accuracy assessment of near-shore

bathymetry information retrieved from Landsat-8

imagery. Earth Science Informatics, 10, 235–245.

DOI: https://doi.org/10.1007/s12145-017-0293-7

Kabiri, K. 2022a. Remote sensing of water clarity in the

near-shore zone using a cross-sensor-based method:

feasibility study: Kish Island, Persian Gulf. Journal of

Coastal Conservation, 26(26). DOI: https://doi.org/

1007/s11852-022-00875-2

Kabiri, K. & Moradi, M. 2023. A cross-sensor-based

approach to estimate depth values in nearshore

coastal waters, case study: Nayband Bay, Persian

Gulf. ISPRS Annals of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, 10,

–348. DOI: https://doi.org/10.5194/isprs-annalsX-4-W1-2022-343-2023

Kabiri, K., Pradhan, B., Rezai, H., Ghobadi, Y., &

Moradi, M. 2012. Fluctuation of sea surface

temperature in the Persian Gulf and its impact on

coral reef communities around Kish Island. In: IEEE

Colloquium on Humanities, Science and Engineering

(CHUSER) (2012, pp. 164–167).

Kabiri, K., Pradhan, B., Samimi-Namin, K. & Moradi, M.

Detecting coral bleaching, using QuickBird

multi-temporal data: a feasibility study at Kish Island,

the Persian Gulf. Estuarine, Coastal and Shelf

Science, 117, 273–281. DOI: https://doi.org/10.1016/

j.ecss.2012.12.006

Kabiri, K., Rezai, H. & Moradi, M. 2018. Mapping of the

corals around Hendorabi Island (Persian Gulf), using

Worldview-2 standard imagery coupled with field

observations. Marine pollution bulletin, 129(1), 266–274.

DOI: https://doi.org/10.1016/j.marpolbul.2018.02.045

Kabiri, K., Rezai, H. & Moradi, M. 2020. A drone-based

method for mapping the coral reefs in the shallow

coastal waters–case study: Kish Island, Persian

Gulf. Earth Science Informatics, 13, 1265–1274.

DOI: https://doi.org/10.1007/s12145-020-00507-z

Kabiri, K., Rezai, H., Moradi, M. & Pourjomeh, F.

Coral reefs mapping using parasailing aerial

photography-feasibility study: Kish Island, Persian Gulf.

Journal of coastal conservation, 18, 691-699. DOI:

https://doi.org/10.1007/s11852-014-0345-9

Laignel, B., Vignudelli, S., Almar, R., Becker, M., Bentamy, A.,

Benveniste, J., Birol, F., Frappart, F., Idier, D., Salameh, E.,

Passaro, M., Menende, M., Simard, M., Turki, E. I. &

Verpoorter, C. 2023. Observation of the coastal

areas, estuaries and deltas from space. Surveys in

Geophysics, 44(5), 1309–1356. DOI: https://doi.org/

1007/s10712-022-09757-6

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A.,

Sayer, A. M., Patadia, F. & Hsu, N. C. 2013.

The Collection 6 MODIS aerosol products over land

and ocean. Atmospheric Measurement Techniques,

(11), 2989–3034. DOI: https://doi.org/10.5194/amt-6-

-2013

Liang, Y., Cheng, Z., Du, Y., Song, D. & You, Z. 2024.

An improved method for water depth mapping in

turbid waters based on a machine learning model.

Estuarine, Coastal and Shelf Science, 296, e108577.

DOI: https://doi.org/10.1016/j.ecss.2023.108577

Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J.,

Mueller-Wilm, U., Cadau, E. G. & Gascon, F. 2016.

Sentinel-2 Sen2Cor: L2A processor for users. In ESA

Living Planet Symposium (2016, pp. 1–8).

Lyzenga, D. R. 1978. Passive remote sensing techniques

for mapping water depth and bottom features. Applied

optics, 17(3), 379–383. DOI: https://doi.org/10.1364/

ao.17.000379

Lyzenga, D. R. 1981. Remote sensing of bottom

reflectance and water attenuation parameters in shallow

water using aircraft and Landsat data. International

journal of remote sensing, 2(1), 71–82. DOI:

https://doi.org/10.1080/01431168108948342

Atmospheric correction effects on depth estimation

Ocean and Coastal Research 2025, v73:e25015 12

Kabiri

Mahiny, A. S. & Turner, B. J. 2007. A comparison of

four common atmospheric correction methods.

Photogrammetric Engineering & Remote Sensing,

(4), 361–368.

Mahrad, B. E., Newton, A., Icely, J. D., Kacimi, I.,

Abalansa, S. & Snoussi, M. 2020. Contribution

of remote sensing technologies to a holistic

coastal and marine environmental management

framework: a review. Remote Sensing, 12(14), 1–47.

Doi: https://doi.org/10.3390/rs12142313

Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V.,

Müller-Wilm, U. & Gascon, F. 2017. Sen2Cor for

sentinel-2. In SPIE Remote Sensing (23 ed, pp. 37–48).

Pike, S., Traganos, D., Poursanidis, D., Williams, J., Medcalf, K.,

Reinartz, P. & Chrysoulakis, N. 2019. Leveraging

commercial high-resolution multispectral satellite and

multibeam sonar data to estimate bathymetry: The case

study of the Caribbean Sea. Remote Sensing, 11(15),

–16. DOI: https://doi.org/10.3390/rs11151830

Samimi Namin, K., Rezai, H., Kabiri, K. & Zohari, Z. 2009.

Unique coral community in the Persian Gulf. Coral Reefs,

, 27. DOI: https://doi.org/10.1007/s00338-008-0442-z

Sepúlveda, I., Tozer, B., Haase, J. S., Liu, P. L. F. &

Grigoriu, M. 2020. Modeling uncertainties of bathymetry

predicted with satellite altimetry data and application

to tsunami hazard assessments. Journal of

Geophysical Research: Solid Earth, 125(9), 1–25.

DOI: https://doi.org/10.1029/2020JB019735

Shokri, M. R. & Mohammadi, M. 2021. Effects of recreational

SCUBA diving on coral reefs with an emphasis on

tourism suitability index and carrying capacity of reefs

in Kish Island, the northern Persian Gulf. Regional

Studies in Marine Science, 45, e101813. DOI: https://

doi.org/10.1016/j.rsma.2021.101813

Stumpf, R. P., Holderied, K. & Sinclair, M. 2003.

Determination of water depth with high-resolution

satellite imagery over variable bottom types. Limnology

and Oceanography, 48(1part2), 547–556. DOI: https://

doi.org/10.4319/lo.2003.48.1_part_2.0547

Vanhellemont, Q. 2019. Adaptation of the dark spectrum

fitting atmospheric correction for aquatic applications of

the Landsat and Sentinel-2 archives. Remote Sensing

of Environment, 225, 175–192. DOI: https://doi.

org/10.1016/j.rse.2019.03.010

Vrdoljak, L. & Kilić Pamuković, J. 2022. Assessment

of atmospheric correction processors and spectral

bands for satellite-derived bathymetry using sentinel-2

data in the middle adriatic. Hydrology, 9(12), 1–19.

DOI: https://doi.org/10.3390/hydrology9120215

Zhang, C. 2015. Applying data fusion techniques for

benthic habitat mapping and monitoring in a coral

reef ecosystem. ISPRS Journal of Photogrammetry

and Remote Sensing, 104, 213–223. DOI: https://doi.

org/10.1016/j.isprsjprs.2014.06.005

Zhang, M., Hu, C., Kowalewski, M. G. & Janz, S. J. 2017.

Atmospheric correction of hyperspectral GCAS airborne

measurements over the North Atlantic Ocean and

Louisiana shelf. IEEE Transactions on Geoscience

and Remote Sensing, 56(1), 168–179.DOI: https://doi.

org/10.1109/TGRS.2017.2744323

Published

28.04.2025

How to Cite

Comparative analysis of three key atmospheric correction techniques for bathymetric mapping in nearshore areas with Sentinel-2 Data - case study: Kish Island, Persian Gulf. (2025). Ocean and Coastal Research, 73. https://doi.org/10.1590/2675-2824073.24077