Comparative analysis of three key atmospheric correction techniques for bathymetric mapping in nearshore areas with Sentinel-2 Data - case study: Kish Island, Persian Gulf
DOI:
https://doi.org/10.1590/2675-2824073.24077Keywords:
Satellite derived bathymetry (SDB), Coastal mapping, Remote sensing, Depth estimationAbstract
This study addresses the critical need for accurate bathymetric data in coastal and nearshore zones, which
are essential for ecological balance and resource management. Traditional depth measurement methods
are costly, labor-intensive, and spatially limited, further complicated by environmental factors. Remote sensing
technologies, particularly the Sentinel-2 satellite imagery, offer a promising solution for efficient and extensive
data acquisition. This research evaluates the impact of three atmospheric correction (AC) methods—FLAASH,
Sen2Cor, and ACOLITE—on depth estimation accuracy using Sentinel-2 imagery over Kish Island, a biodiverse
coral reef habitat in the Persian Gulf. Field measurements at 932 points around the island were used to train
and test the performance of the AC methods. An integrated linear and ratio transformation model, utilizing green
and blue bands of Sentinel-2, was applied to derive depth values. Statistical analyses, including the coefficient
of determination (R²), root-mean-square error (RMSE), and mean absolute percentage error (MAPE), indicate
that ACOLITE consistently outperforms the other methods, achieving R² values often exceeding 0.8, the lowest
RMSE values of ~ 1.41 m, and a MAPE of ~ 41.56%. In contrast, Sen2Cor exhibits greater variability, with an
R² of up to 0.78 and an RMSE of up to 1.75 m and MAPE of 47.10%, while FLAASH offers stable but less
precise performance, with R² values ~ 0.74, RMSE ranging from 1.70 m to 1.91 m, and MAPE up to 50.26%.
Thus, ACOLITE emerges as the most accurate and reliable method for atmospheric correction, enhancing the
accuracy of bathymetric data and aiding the conservation and management of coastal environments.
Downloads
References
Apostolopoulos, D. & Nikolakopoulos, K. 2021. A review and
meta-analysis of remote sensing data, GIS methods,
materials and indices used for monitoring the coastline
evolution over the last twenty years. European Journal of
Remote Sensing, 54(1), 240–265. DOI: https://doi.org/
1080/22797254.2021.1904293
Ashphaq, M., Srivastava, P. K. & Mitra, D. 2021. Review of
near-shore satellite derived bathymetry: Classification
and account of five decades of coastal bathymetry
research. Journal of Ocean Engineering and
Science, 6(4), 340–359. DOI: https://doi.org/10.1016/
j.joes.2021.02.006
Beni, A. N., Marriner, N., Sharifi, A., Azizpour, J.,
Kabiri, K., Djamali, M. & Kirman, A. 2021. Climate
change: A driver of future conflicts in the Persian Gulf
Region? Heliyon, 7(2), 1–18. DOI: https://doi.org/
1016/j.heliyon.2021.e06288
Brown, C. J. & Collier, J. S. 2008. Mapping benthic habitat
in regions of gradational substrata: an automated
approach utilising geophysical, geological, and
biological relationships. Estuarine, Coastal and Shelf
Science, 78(1), 203–214. DOI: https://doi.org/10.1016/
j.ecss.2007.11.026
Caballero, I. & Stumpf, R. P. 2019. Retrieval of nearshore
bathymetry from Sentinel-2A and 2B satellites in South
Florida coastal waters. Estuarine, Coastal and Shelf
Science, 226, 1-12. DOI: https://doi.org/10.1016/
j.ecss.2019.106277
Caballero, I. & Stumpf, R. P. 2020. Atmospheric correction
for satellite-derived bathymetry in the Caribbean waters:
From a single image to multi-temporal approaches
using Sentinel-2A/B. Optics Express, 28(8), 11742–
DOI: https://doi.org/10.1364/oe.390316
Casal, G., Hedley, J. D., Monteys, X., Harris, P., Cahalane, C. &
McCarthy, T. 2020. Satellite-derived bathymetry in
optically complex waters using a model inversion
approach and Sentinel-2 data. Estuarine, Coastal
and Shelf Science, 241, e106814. DOI: https://doi.org/
1016/j.ecss.2020.106814
Casal, G., Monteys, X., Hedley, J., Harris, P., Cahalane, C. &
McCarthy, T. 2019. Assessment of empirical
algorithms for bathymetry extraction using Sentinel-2
data. International Journal of Remote Sensing, 40(8),
–2879. DOI: https://doi.org/10.1080/01431161.
1533660
Castillo-López, E., Dominguez, J. A., Pereda, R., de Luis, J. M.,
Pérez, R. & Piña, F. 2017. The importance of
atmospheric correction for airborne hyperspectral
remote sensing of shallow waters: application to
depth estimation. Atmospheric Measurement
Techniques, 10(10), 3919–3929. DOI: https://doi.org/
5194/amt-10-3919-2017
De Keukelaere, L., Sterckx, S., Adriaensen, S., Knaeps, E.,
Reusen, I., Giardino, C., Bresciani P. H., Neil, C.,
Van der Zande, D. & Vaiciute, D. 2018. Atmospheric
correction of Landsat-8/OLI and Sentinel-2/MSI data
using iCOR algorithm: validation for coastal and
inland waters. European Journal of Remote Sensing,
(1), 525–542. DOI: https://doi.org/10.1080/22797254.
1457937
Duan, Z., Chu, S., Cheng, L., Ji, C., Li, M. & Shen, W.
Satellite-derived bathymetry using Landsat-8
and Sentinel-2A images: Assessment of atmospheric
correction algorithms and depth derivation models in
Atmospheric correction effects on depth estimation
Ocean and Coastal Research 2025, v73:e25015 11
Keivan Kabiri
shallow waters. Optics Express, 30(3), 3238–3261.
DOI: https://doi.org/10.1364/oe.444557
Eugenio, F., Marcello, J. & Martin, J. 2015. High-resolution
maps of bathymetry and benthic habitats in shallowwater environments using multispectral remote
sensing imagery. IEEE Transactions on Geoscience
and Remote Sensing, 53(7), 3539–3549. DOI:
https://doi.org/10.1109/TGRS.2014.2377300
Evagorou, E., Mettas, C., Agapiou, A., Themistocleous, K. &
Hadjimitsis, D. 2019. Bathymetric maps from multitemporal analysis of Sentinel-2 data: the case study of
Limassol, Cyprus. Advances in Geosciences, 45, 397–407.
DOI: https://doi.org/10.5194/adgeo-45-397-2019
Frantz, D., Haß, E., Uhl, A., Stoffels, J. & Hill, J. 2018.
Improvement of the Fmask algorithm for Sentinel-2
images: Separating clouds from bright surfaces
based on parallax effects. Remote sensing of
environment, 215, 471–481. DOI: https://doi.org/
1016/j.rse.2018.04.046
Gascon, F., Bouzinac, C., Thépaut, O., Jung, M.,
Francesconi, B., Louis, J., Lonjou, V., Lafrance, B,
Massera, S, Gaudel-Vacaresse, A, Languille, F.,
Alhammoud, B., Viallefont, F., Pflug, B.,
Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T.,
Cadau, E., de Bonis, R., Isola, C., Martimort, P. &
Fernandez, V. 2017. Copernicus Sentinel-2A calibration
and products validation status. Remote Sensing,
(6), 1–81. DOI: https://doi.org/10.3390/rs9060584
Hedley, J. D., Roelfsema, C., Brando, V., Giardino, C.,
Kutser, T., Phinn, S., Mumby, P. J., Barrilero, O.,
Laporte, J. & Koetz, B. 2018. Coral reef applications
of Sentinel-2: Coverage, characteristics, bathymetry
and benthic mapping with comparison to Landsat 8.
Remote sensing of environment, 216, 598–614. DOI:
https://doi.org/10.1016/j.rse.2018.07.014
Jones, R., Pineda, M. C., Luter, H. M., Fisher, R., Francis, D.,
Klonowski, W. & Slivkoff, M. 2021. Underwater light
characteristics of turbid coral reefs of the inner central
great barrier reef. Frontiers in Marine Science, 8,
–22. DOI: https://doi.org/10.3389/fmars.2021.727206
Kabiri, K. 2017a. Discovering optimum method to extract
depth information for nearshore coastal waters from
Sentinel-2A imagery-case study: Nayband Bay,
Iran. The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences,
, 105–110. DOI: https://doi.org/10.5194/isprs-archivesXLII-4-W4-105-2017
Kabiri, K. 2017b. Accuracy assessment of near-shore
bathymetry information retrieved from Landsat-8
imagery. Earth Science Informatics, 10, 235–245.
DOI: https://doi.org/10.1007/s12145-017-0293-7
Kabiri, K. 2022a. Remote sensing of water clarity in the
near-shore zone using a cross-sensor-based method:
feasibility study: Kish Island, Persian Gulf. Journal of
Coastal Conservation, 26(26). DOI: https://doi.org/
1007/s11852-022-00875-2
Kabiri, K. & Moradi, M. 2023. A cross-sensor-based
approach to estimate depth values in nearshore
coastal waters, case study: Nayband Bay, Persian
Gulf. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 10,
–348. DOI: https://doi.org/10.5194/isprs-annalsX-4-W1-2022-343-2023
Kabiri, K., Pradhan, B., Rezai, H., Ghobadi, Y., &
Moradi, M. 2012. Fluctuation of sea surface
temperature in the Persian Gulf and its impact on
coral reef communities around Kish Island. In: IEEE
Colloquium on Humanities, Science and Engineering
(CHUSER) (2012, pp. 164–167).
Kabiri, K., Pradhan, B., Samimi-Namin, K. & Moradi, M.
Detecting coral bleaching, using QuickBird
multi-temporal data: a feasibility study at Kish Island,
the Persian Gulf. Estuarine, Coastal and Shelf
Science, 117, 273–281. DOI: https://doi.org/10.1016/
j.ecss.2012.12.006
Kabiri, K., Rezai, H. & Moradi, M. 2018. Mapping of the
corals around Hendorabi Island (Persian Gulf), using
Worldview-2 standard imagery coupled with field
observations. Marine pollution bulletin, 129(1), 266–274.
DOI: https://doi.org/10.1016/j.marpolbul.2018.02.045
Kabiri, K., Rezai, H. & Moradi, M. 2020. A drone-based
method for mapping the coral reefs in the shallow
coastal waters–case study: Kish Island, Persian
Gulf. Earth Science Informatics, 13, 1265–1274.
DOI: https://doi.org/10.1007/s12145-020-00507-z
Kabiri, K., Rezai, H., Moradi, M. & Pourjomeh, F.
Coral reefs mapping using parasailing aerial
photography-feasibility study: Kish Island, Persian Gulf.
Journal of coastal conservation, 18, 691-699. DOI:
https://doi.org/10.1007/s11852-014-0345-9
Laignel, B., Vignudelli, S., Almar, R., Becker, M., Bentamy, A.,
Benveniste, J., Birol, F., Frappart, F., Idier, D., Salameh, E.,
Passaro, M., Menende, M., Simard, M., Turki, E. I. &
Verpoorter, C. 2023. Observation of the coastal
areas, estuaries and deltas from space. Surveys in
Geophysics, 44(5), 1309–1356. DOI: https://doi.org/
1007/s10712-022-09757-6
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A.,
Sayer, A. M., Patadia, F. & Hsu, N. C. 2013.
The Collection 6 MODIS aerosol products over land
and ocean. Atmospheric Measurement Techniques,
(11), 2989–3034. DOI: https://doi.org/10.5194/amt-6-
-2013
Liang, Y., Cheng, Z., Du, Y., Song, D. & You, Z. 2024.
An improved method for water depth mapping in
turbid waters based on a machine learning model.
Estuarine, Coastal and Shelf Science, 296, e108577.
DOI: https://doi.org/10.1016/j.ecss.2023.108577
Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J.,
Mueller-Wilm, U., Cadau, E. G. & Gascon, F. 2016.
Sentinel-2 Sen2Cor: L2A processor for users. In ESA
Living Planet Symposium (2016, pp. 1–8).
Lyzenga, D. R. 1978. Passive remote sensing techniques
for mapping water depth and bottom features. Applied
optics, 17(3), 379–383. DOI: https://doi.org/10.1364/
ao.17.000379
Lyzenga, D. R. 1981. Remote sensing of bottom
reflectance and water attenuation parameters in shallow
water using aircraft and Landsat data. International
journal of remote sensing, 2(1), 71–82. DOI:
https://doi.org/10.1080/01431168108948342
Atmospheric correction effects on depth estimation
Ocean and Coastal Research 2025, v73:e25015 12
Kabiri
Mahiny, A. S. & Turner, B. J. 2007. A comparison of
four common atmospheric correction methods.
Photogrammetric Engineering & Remote Sensing,
(4), 361–368.
Mahrad, B. E., Newton, A., Icely, J. D., Kacimi, I.,
Abalansa, S. & Snoussi, M. 2020. Contribution
of remote sensing technologies to a holistic
coastal and marine environmental management
framework: a review. Remote Sensing, 12(14), 1–47.
Doi: https://doi.org/10.3390/rs12142313
Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V.,
Müller-Wilm, U. & Gascon, F. 2017. Sen2Cor for
sentinel-2. In SPIE Remote Sensing (23 ed, pp. 37–48).
Pike, S., Traganos, D., Poursanidis, D., Williams, J., Medcalf, K.,
Reinartz, P. & Chrysoulakis, N. 2019. Leveraging
commercial high-resolution multispectral satellite and
multibeam sonar data to estimate bathymetry: The case
study of the Caribbean Sea. Remote Sensing, 11(15),
–16. DOI: https://doi.org/10.3390/rs11151830
Samimi Namin, K., Rezai, H., Kabiri, K. & Zohari, Z. 2009.
Unique coral community in the Persian Gulf. Coral Reefs,
, 27. DOI: https://doi.org/10.1007/s00338-008-0442-z
Sepúlveda, I., Tozer, B., Haase, J. S., Liu, P. L. F. &
Grigoriu, M. 2020. Modeling uncertainties of bathymetry
predicted with satellite altimetry data and application
to tsunami hazard assessments. Journal of
Geophysical Research: Solid Earth, 125(9), 1–25.
DOI: https://doi.org/10.1029/2020JB019735
Shokri, M. R. & Mohammadi, M. 2021. Effects of recreational
SCUBA diving on coral reefs with an emphasis on
tourism suitability index and carrying capacity of reefs
in Kish Island, the northern Persian Gulf. Regional
Studies in Marine Science, 45, e101813. DOI: https://
doi.org/10.1016/j.rsma.2021.101813
Stumpf, R. P., Holderied, K. & Sinclair, M. 2003.
Determination of water depth with high-resolution
satellite imagery over variable bottom types. Limnology
and Oceanography, 48(1part2), 547–556. DOI: https://
doi.org/10.4319/lo.2003.48.1_part_2.0547
Vanhellemont, Q. 2019. Adaptation of the dark spectrum
fitting atmospheric correction for aquatic applications of
the Landsat and Sentinel-2 archives. Remote Sensing
of Environment, 225, 175–192. DOI: https://doi.
org/10.1016/j.rse.2019.03.010
Vrdoljak, L. & Kilić Pamuković, J. 2022. Assessment
of atmospheric correction processors and spectral
bands for satellite-derived bathymetry using sentinel-2
data in the middle adriatic. Hydrology, 9(12), 1–19.
DOI: https://doi.org/10.3390/hydrology9120215
Zhang, C. 2015. Applying data fusion techniques for
benthic habitat mapping and monitoring in a coral
reef ecosystem. ISPRS Journal of Photogrammetry
and Remote Sensing, 104, 213–223. DOI: https://doi.
org/10.1016/j.isprsjprs.2014.06.005
Zhang, M., Hu, C., Kowalewski, M. G. & Janz, S. J. 2017.
Atmospheric correction of hyperspectral GCAS airborne
measurements over the North Atlantic Ocean and
Louisiana shelf. IEEE Transactions on Geoscience
and Remote Sensing, 56(1), 168–179.DOI: https://doi.
org/10.1109/TGRS.2017.2744323
Published
Issue
Section
License
Copyright (c) 2025 Keivan Kabiri

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.
