Observations of the surface current field in morphologically complex environments using drones

Authors

  • Flavia Macedo
  • Carlos Augusto Schettini

DOI:

https://doi.org/10.1590/2675-2824073.24002

Keywords:

Hydrodynamics, Remote sensing, Python

Abstract

This study aims to analyze the use of drones to measure surface currents and make it accessible via package
of routines generated using free software. Validation was performed in a complex environment comparing the
results with currents measured by acoustic Doppler current profiler (ADCP) and dye tracers. Then, we assessed
the performance of the method at various altitudes and image resolutions. We found equivalent values obtained
by the drone with dye tracers and ADCP, confirming the efficiency of the technique. However, best agreement
with the dye tracer, as it provide velocity near the surface, which is more compatible with the data generated by
the drone. On the other hand, ADCPs generate measurements around 1 m below the surface due to acoustic
signal interference near the surface and the level of the transducers. The use of drones showed promise,
agreeing with direct observations, and low sensitivity for video recordings at lower resolutions, thus reducing
processing time. The implementation of the technique in Python enables its use on free software. Based on
the comparisons, we highlight the need for future studies to test the efficiency of the drone method at different
altitudes and camera inclination angles, which would enable larger data collection areas.

Downloads

Download data is not yet available.

References

Adrian, R. & Westerweel, J. 2011. Particle Image velocimetry.

Cambridge: Cambridge Univeristy Press. 558p.

Baumgarten, M. G. Z., Niencheski, L. F. H. & Veeck, L. 2001.

Nutrientes na coluna da água e na água intersticial

de sedimentos de uma enseada rasa estuarina com

aportes de origem antrópica (RS – Brasil). Atlântica, 23,

–116.

Bowden, K. F. 1983. Physical oceanography of coastal

waters. Southhampton: Ellis Horwood, 302p.

CARRASCO, R. 2019. CopterCurrents. Available from:

GitHub. https://github.com/RubenCarrascoAlvarez/

CopterCurrents. Access date: 2023 Sep. 28.

Chapman, R. D., Shay, L. K., Graber, H. C., Edson, J. B.,

Karachintsey A., Trump, C. L. & Ross, D. B. 1997. On the

accuracy of HF radar surface current measurements:

Intercomparisons with ship-based sensors. Journal of

Geophysical Research, 102, 18737–18748.

Chickadel, C. C., Holman, R. A. & Frellich, M. H.

An optical technique for the measurement

of longshore currents. Journal of Geophysical

Research (Oceans), 108(C11). https://doi.org/10.1029/

JC001774

Chickadel, C. C., Talke, S. A., Horner-Devine, A. R. &

Jessup, A. T. 2011. Infrared-based measurements

of velocity, turbulent kinetic energy, and dissipation

at the water surface in a tidal river. IEEE Geoscience

and Remote Sensing Letters, 8(5), 849–853.

DJI. 2023. Phantom 4 Pro V2.0 - Technical specifications.

Available from: https://www.dji.com/br/support/product/

phantom-4-pro-v2. Access date: 2023 Sep. 28.

Fairley, I., Williamson, B. J., Mcilvenny, J., King, N.,

Masters, I., Lewis, M. & Reeve, D. E. 2022. Dronebased large-scale particle image velocimetry applied to

tidal stream energy resource assessment. Renewable

Energy, 196, 839–855. DOI: https://doi.org/10.1016/j.

renene.2022.07.030

Fairley, I., King, N., Mcilvenny, J., Lewis, M., Neill, S.,

Williamson, B. J., Masters, I. & Reeve, D. E. 2024.

Intercomparison of surface velocimetry techniques for

drone-based marine current characterization. Estuarine,

Coastal and Shelf Science, 299, 108682. DOI: https://

doi.org/10.1016/10.1016/j.ecss.2024.108682

Fernandes, E. H. L., Dyer, K. R.,

Moller, O. O. & Niencheski, L. F. H. 2002. The Patos

lagoon hydrodinamics during na El Nino event

(1998). Continental Shelf Research, 22, 1699–1713.

Fong, D. A. & Monismith, S. G. 2004. Evaluation os

the Accuracy of a Ship Mounted, Bottom-Tracking

ADCP in a Near-Shore Coastal Flow. Journal of

Atmospheric and Oceanic Technology, 21, 1121–1128.

Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C.

V., Micheli, F., Casey, K. S., Fox, H. E. & Heinemann,

D. 2008. A global map of human impact on marine

ecosystems. Science, 319, 948–952.

Hartmann, C. & Schettini, C. A. F. 1991. Aspectos

hidrológicos na desembocadura da laguna dos Patos,

RS. Revista Brasileira de Geociências, 21, 371–377.

Holman, R. A. & Stanley, J. 2007. The history and technical

capabilities of Argus. Coastal Engineering, 54, 477–491.

Holman, r. A., Brodie, k. L. & Spore, n. J. 2017. Surf

zone characterization using a small quadcopter:

Observations of surface currents using drones

Ocean and Coastal Research 2025, v73:e25009 17

Macedo and Schettini

Technical issues and procedures. IEEE Transactions

on Geoscience and Remote Sensing, 55(4).

James, M. R. & Robson, S. 2014. Mitigating systematic

error in topographic models derived from UAV

and ground-based image networks. Earth

Surface Processes and Landforms, 39(10), 1413–1420.

Koutalakis, P. & Zaimes, G. N. 2022. River flow measurements

utilizing UAV-based surface velocimetry and bathymetry

coupled with sonar. Hydrology, 9(8), 148.

Lentz, S. J. 2022. Interannual and seasonal along-shelf

current variability and dynamics: seventeen years

of observations from the southern New England

inner shelf. Journal of Physical Oceanography,

DOI: https://doi.org/10.1175/JPO-D-22-0064.1

Macedo, F. S., Schettini, C. A. F. & Arigony, J. 2023.

Obtaining surface current field from drone imaging.

Ocean and Coastal Research, 71, e23015. DOI:

https://doi.org/10.1590/2675-2824071.22109fm

Marone, E., Schettini, C. A. F., Siegle, E., Niencheski, L.

F., Madureira, L. A. S. P., Weigert, S., Pinho, M. P. &

Coletto, J. L. 2020. Oceanografia operacional. In: Lana,

P. C., Castello J. (Org.). Fronteiras do conhecimento

em ciências do mar (pp. 54-92). Porto Alegre: Editora

da FURG.

Moller, O. O., Lorenzetti, J. L., Stech, J. L. & Mata, M. M.

The Patos Lagoon summertime circulation and

dynamics. Continental Shelf Research, 16, 35-351.

Monteiro, I. O., Pearson, M. L., Moller, O. O. & Fernandes,

E. H. L. 2005. Hidrodinâmica do Saco da Mangueira:

Mecanismos Que Controlam as Trocas Com o Estuário

da Lagoa dos Patos. Atlântica, 27(2), 87-101.

Mooers, C. N. K. 1976. Introduction to the physical

oceanography and fluid dynamics of continental

margins. In: STANLEY, D. J. & SWIFT, D. J. (Ed.)

Mar sed transp and environ manage (pp. 7-21).

New York: John Wiley and Sons.

Novi, L., Raffa, F. & Serafino, F. 2020. Comparison of

Measured Surface Currents from High Frequency

(HF) and X-Band Radar in a Marine Protected Coastal

Area of the Ligurian Sea: Toward na Integrated

Monitoring System. Remote Sens, 12(18), 3074. DOI:

https://doi.org/10.3390/rs12183074

Palmsten, M. L., Jozarek, J. L. & Calantoni, J. 2015. Video

observations of bed form morphodynamics in a meander

bend. Water Resources Research, 51(9), 7238-7257.

Plant, W. J., Branch, R., Chatham, G., Chickadel, C. C.,

Hayes, K., Hayworth, B., Horner-Devine, A., Jessup, A.,

Fong, D. A., Fringer, O. B., Giddings, S. N., Monismith,

S. & Wang, B. 2009. Remotely sensed river surface features

compared with modeling and in situ measurements.

Journal of Geophysical Research (Oceans), 114(C11).

DOI: https://doi.org/10.1029/2009JC005440

Rodríguez, E., Bourassa, M., Chelton, D., Farrar, J. T.,

Long, D., Perkovic-Martin, D. & Samelson, R. 2019.

The winds and currents mission concept. Frontiers in

Marine Science, 6, 438. DOI: https://doi.org/10.3389/

fmars.2019.00438

Santa-Rosa, P.r.a. & Schettini, C.a.f. 2024. Daily variability

of estuary-shelf exchange at the Lagoa dos Patos’s

mouth. Regional Studies in Marine Science, 77:103633,

DOI: https://doi.org/10.1016/j.rsma.2024.103633

Silva, S. C. C. & Calliari, L. J. 2022. Padrões

sedimentológicos e morfológicos de uma enseada

numa lagoa costeira micromaré: Lagoa dos

Patos, sul do Brasil. Pesquisas em Geociências,

1, e112719-e112719. DOI: https://doi.org/10.22456/

-9806.112719

Stöcker, C., Nex, F., Koeva, M. & Gerke, M. 2017. Quality

assessment of combined IMU/GNSS data for direct

georeferencing in the context of UAV-based mapping.

The International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, 42,

-361.

Stresser, M., Carrasco, R. & Horstmann, J. 2017. VideoBased Estimation of Surface Currents Using a LowCost Quadcopter. Geosci and Remote Sens Lett,

(11), 2027-2031. DOI: https://doi.org/10.1109/

LGRS.2017.2749120

Turner, D., Lucieer, A. & Watson, C. 2012. An automated

technique for generating georectified mosaics from

ultra-high resolution unmanned aerial vehicle (UAV)

imagery, based on structure from motion (SfM) point

clouds. Remote Sensing, 4(5), 1392-1410.

Valle-Levinson, A. 2022. Introduction to estuarine

hydrodynamics. Cambridge: Cambridge University

Press, 214p.

Van Rijn, L. C. 1998. Principles of coastal morphology.

Amsterdam: Acqua Publications.

Zhang, Y. J. 2023. Camera calibration. 3-D Computer Vision:

Principles, Algorithms and Applications (pp. 37-65).

Singapore: Springer Nature Singapore.

Downloads

Published

28.04.2025

How to Cite

Observations of the surface current field in morphologically complex environments using drones. (2025). Ocean and Coastal Research, 73. https://doi.org/10.1590/2675-2824073.24002