Monitoring marine heatwaves in Salvador-BA using SiMCosta data

Authors

  • Bruna Alves Oliveira Destéfani
  • Carlos Alberto Eiras Garcia

DOI:

https://doi.org/10.1590/

Keywords:

Sea surface temperature anomalies, Local climate extremes, Ocean observation

Abstract

The frequency, duration, and intensity of Marine Heatwaves (MHWs) have been increasing, with a notable trend
in the South Atlantic. This study investigates MHW occurrences over the past five years (August 2019 to April
2024) using sea surface temperature (SST) data from the Tracker tool and the SiMCosta BA01 buoy, located in
Salvador, Bahia, Brazil. The Tracker identified 23 MHW events, while the SiMCosta buoy revealed 42 events,
indicating greater variability due to local dynamics. A particularly significant event occurred in March 2024, with
a maximum SST anomaly of 2.61ºC. The onset of this warming coincided with an extreme El Niño in the Tropical
Pacific, suggesting a possible interaction between global climate patterns and local extremes. The identification
and analysis of MHW events using the SiMCosta buoy highlight the need for continuous and detailed monitoring
of meteorological and oceanographic data to better assess and understand local climatic extremes and their
impacts, especially on marine ecosystems and regional economic activities.

Downloads

Download data is not yet available.

References

Amaya, D. J. & Foltz, G. R. 2014. Impacts of canonical

and Modoki El Niño on tropical Atlantic SST. Journal of

Geophysical Research: Oceans, 119(2), 777–789. DOI:

https://doi.org/10.1002/2013JC009476

Cai, W., McPhaden, M. J., Grimm, A. M., Rodrigues, R. R.,

Taschetto, A. S., Garreaud, R. D., Dewitte, B., Poveda,

G., Ham, Y.-G., Santoso, A., Ng, B., Anderson, W.,

Wang, G., Geng, T., Jo, H.-S., Marengo, J. A., Alves,

L. M., Osman, M., Li, S., Wu, L., Karamperidou, C.,

Takahashi, K. & Vera, C. 2020. Climate impacts of the

El Niño–Southern Oscillation on South America. Nature

Reviews Earth & Environment, 1(4), 215–231. DOI:

https://doi.org/10.1038/s43017-020-0040-3

Cheung, W. W. L. & Frölicher, T. L. 2020. Marine heatwaves

exacerbate climate change impacts for fisheries in the

northeast Pacific. Scientific Reports, 10(1), 6678. DOI:

https://doi.org/10.1038/s41598-020-63650-z

Chiang, J. C. H. & Vimont, D. J. 2004. Analogous Pacific

and Atlantic Meridional Modes of Tropical Atmosphere–

Ocean Variability*. Journal of Climate, 17(21), 4143–

DOI: https://doi.org/10.1175/JCLI4953.1

Clark, N. E., Eber, L. E., Laurs, R. M., Renneer, J. A. &

Saur, J. F. T. (1974). Heat exchange between ocean

and atmosphere in the eastern North Pacific for

Monitoring marine heatwaves using SiMCosta data

Ocean and Coastal Research 2025, v73:e25023 9

Destéfani and Garcia

-71. Seattle, National Oceanic and Atmospheric

Administration.

Costa, N. V. & Rodrigues, R. R. 2021. Future Summer Marine

Heatwaves in the Western South Atlantic. Geophysical

Research Letters, 48(22), e2021GL094509. DOI:

https://doi.org/10.1029/2021GL094509

Dong, S., Lopez, H., Lee, S., Meinen, C. S., Goni, G. &

Baringer, M. 2020. What Caused the Large‐Scale

Heat Deficit in the Subtropical South Atlantic Ocean

During 2009–2012? Geophysical Research Letters,

(11), e2020GL088206. DOI: https://doi.org/10.1029/

GL088206

Drumond, A., Marengo, J., Ambrizzi, T., Nieto, R.,

Moreira, L. & Gimeno, L. 2014. The role of the Amazon

Basin moisture in the atmospheric branch of the

hydrological cycle: a Lagrangian analysis. Hydrology

and Earth System Sciences, 18(7), 2577–2598. DOI:

https://doi.org/10.5194/hess-18-2577-2014

Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B. &

Young, G. S. 1996. Bulk parameterization of air‐sea

fluxes for Tropical Ocean‐Global Atmosphere Coupled‐

Ocean Atmosphere Response Experiment. Journal of

Geophysical Research: Oceans, 101(C2), 3747–3764.

DOI: https://doi.org/10.1029/95JC03205

Ferreira, L. C. L., Grillo, A. C., Repinaldo Filho, F. P. M.,

Souza, F. N. R. & Longo, G. O. 2021. Different responses

of massive and branching corals to a major heatwave at

the largest and richest reef complex in South Atlantic.

Marine Biology, 168(5), 54. DOI: https://doi.org/10.1007/

s00227-021-03863-6

Foltz, G. R., McPhaden, M. J. & Lumpkin, R. 2012. A Strong

Atlantic Meridional Mode Event in 2009: The Role of

Mixed Layer Dynamics*. Journal of Climate, 25(1), 363–

DOI: https://doi.org/10.1175/JCLI-D-11-00150.1

Fung, I. Y., Harrison, D. E. & Lacis, A. A. 1984. On the

variability of the net longwave radiation at the ocean

surface. Reviews of Geophysics, 22(2), 177–193. DOI:

https://doi.org/10.1029/RG022i002p00177

Garfinkel, C. I. & Hartmann, D. L. 2010. Influence of the

quasi‐biennial oscillation on the North Pacific and El

Niño teleconnections. Journal of Geophysical Research:

Atmospheres, 115(D20), 2010JD014181. DOI: https://

doi.org/10.1029/2010JD014181

Giannini, A., Saravanan, R. & Chang, P. 2004. The

preconditioning role of Tropical Atlantic Variability in the

development of the ENSO teleconnection: implications

for the prediction of Nordeste rainfall. Climate Dynamics,

(8), 839–855. DOI: https://doi.org/10.1007/s00382-

-0420-2

González Hernández, M. M., León, C. J., García, C. & Lam-

González, Y. E. 2023. Assessing the climate-related risk

of marine biodiversity degradation for coastal and marine

tourism. Ocean & Coastal Management, 232, 106436.

DOI: https://doi.org/10.1016/j.ocecoaman.2022.106436

Grimm, A. M., Barros, V. R. & Doyle, M. E. 2000. Climate

Variability in Southern South America Associated

with El Niño and La Niña Events. Journal of

Climate, 35–58. DOI: https://doi.org/10.1175/1520-

(2000)013<0035:CVISSA>2.0.CO;2

Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A.,

Straub, S. C., Oliver, E. C. J., Benthuysen, J. A., Burrows,

M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore,

P. J., Scannell, H. A., Sen Gupta, A. & Wernberg, T. 2016.

A hierarchical approach to defining marine heatwaves.

Progress in Oceanography, 141, 227–238. DOI: https://

doi.org/10.1016/j.pocean.2015.12.014

Hobday, A. J., Oliver, E. C. J., Gupta, A. S., Benthuysen, J. A.,

Burrows, M. T., Donat, M. G., Holbrook, N. J., Moore,

P. J., Thomsen, M. S., Wernberg, T. & Smale, D. A.

Categorizing and Naming MARINE HEATWAVES.

Oceanography, 31(2), 162–173. Accessed: https://www.

jstor.org/stable/26542662

Hoerling, M. P., Kumar, A. & Zhong, M. 1997. El Niño, La

Niña, and the Nonlinearity of Their Teleconnections.

Journal of Climate, 10(8), 1769–1786. DOI: https://doi.

org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0

.CO;2

Hsiung, J. 1985. Estimates of Global Oceanic Meridional

Heat Transport. Journal of Physical Oceanography,

(11), 1405–1413. DOI: https://doi.org/10.1175/1520-

(1985)015<1405:EOGOMH>2.0.CO;2

Hughes, T. P., Kerry, J. T. & Simpson, T. 2018. Large‐scale

bleaching of corals on the Great Barrier Reef. Ecology,

(2), 501–501. DOI: https://doi.org/10.1002/ecy.2092

Li, Y., Xie, S., Lian, T., Zhang, G., Feng, J., Ma, J., Peng, Q.,

Wang, W., Hou, Y. & Li, X. 2023. Interannual Variability

of Regional Hadley Circulation and El Niño Interaction.

Geophysical Research Letters, 50(4), e2022GL102016.

DOI: https://doi.org/10.1029/2022GL102016

Morgan, K. M., Perry, C. T., Johnson, J. A. & Smithers,

S. G. 2017. Nearshore Turbid-Zone Corals Exhibit

High Bleaching Tolerance on the Great Barrier Reef

Following the 2016 Ocean Warming Event. Frontiers in

Marine Science, 4, 224. DOI: https://doi.org/10.3389/

fmars.2017.00224

Medeiros, F. J. & Oliveira, C. P. 2021. Dynamical

Aspects of the Recent Strong El Niño Events and

Its Climate Impacts in Northeast Brazil. Pure and

Applied Geophysics, 178(6), 2315–2332. DOI: https://

doi.org/10.1007/s00024-021-02758-3

Neelin, J. D., Chou, C. & Su, H. 2003. Tropical drought

regions in global warming and El Niño teleconnections.

Geophysical Research Letters, 30(24), 2003GL018625.

DOI: https://doi.org/10.1029/2003GL018625

Nobre, P. & Srukla, J. 1996. Variations of Sea Surface

Temperature, Wind Stress, and Rainfall over the

Tropical Atlantic and South America. Journal of Climate,

(10), 2464–2479. DOI: https://doi.org/10.1175/1520-

(1996)009<2464:VOSSTW>2.0.CO;2

Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J.,

Smale, D. A., Alexander, L. V., Benthuysen, J. A., Feng,

M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-

Kirkpatrick, S. E., Scannell, H. A., Straub, S. C. & Wernberg,

T. 2018. Longer and more frequent marine heatwaves over

the past century. Nature Communications, 9(1), 1324. DOI:

https://doi.org/10.1038/s41467-018-03732-9

Reed, R. K. 1977. On Estimating Insolation over the Ocean.

Journal of Physical Oceanography, 7(3), 482–485. DOI:

https://doi.org/10.1175/1520-0485(1977)007<0482:OEI

OTO>2.0.CO;2

Roberts, S. D., Van Ruth, P. D., Wilkinson, C., Bastianello,

S. S. & Bansemer, M. S. 2019. Marine Heatwave,

Monitoring marine heatwaves using SiMCosta data

Ocean and Coastal Research 2025, v73:e25023 10

Destéfani and Garcia

Harmful Algae Blooms and an Extensive Fish Kill

Event During 2013 in South Australia. Frontiers in

Marine Science, 6, 610. DOI: https://doi.org/10.3389/

fmars.2019.00610

Rodrigues, R. R., Haarsma, R. J., Campos, E. J. D. &

Ambrizzi, T. 2011. The Impacts of Inter–El Niño Variability

on the Tropical Atlantic and Northeast Brazil Climate.

Journal of Climate, 24(13), 3402–3422. DOI: https://

doi.org/10.1175/2011JCLI3983.1

Rodrigues, R. R. & McPhaden, M. J. 2014. Why did the

–2012 La Niña cause a severe drought in the Brazilian

Northeast? Geophysical Research Letters, 41(3), 1012–

DOI: https://doi.org/10.1002/2013GL058703

Schlegel, R. W. (2020). Marine heatwave tracker. See

http://www.marineheatwaves.org/tracker.

Smith, K. E., Burrows, M. T., Hobday, A. J., Sen Gupta, A.,

Moore, P. J., Thomsen, M., Wernberg, T. & Smale, D. A.

Socioeconomic impacts of marine heatwaves:

Global issues and opportunities. Science, 374(6566),

eabj3593. DOI: https://doi.org/10.1126/science.abj3593

Taschetto, A. S., Ummenhofer, C. C., Stuecker, M. F.,

Dommenget, D., Ashok, K., Rodrigues, R. R. &

Yeh, S. 2020. ENSO Atmospheric Teleconnections.

In: McPhaden, M. J., Santoso, A., & Cai, W. (Eds).

Geophysical Monograph Series (pp. 309–335). Wiley.

Tedeschi, R. G., Grimm, A. M. & Cavalcanti, I. F. A. 2015.

Influence of Central and East ENSO on extreme events

of precipitation in South America during austral spring

and summer. International Journal of Climatology, 35(8),

–2064. DOI: https://doi.org/10.1002/joc.4106

Vogt, L., Burger, F. A., Griffies, S. M. & Frölicher, T. L.

Local Drivers of Marine Heatwaves: A Global

Analysis With an Earth System Model. Frontiers in

Climate, 4, 847995. DOI: https://doi.org/10.3389/

fclim.2022.847995

Yang, Q., Cokelet, E. D., Stabeno, P. J., Li, L., Hollowed,

A. B., Palsson, W. A., Bond, N. A. & Barbeaux, S. J.

How “The Blob” affected groundfish distributions

in the Gulf of Alaska. Fisheries Oceanography, 28(4),

–453. DOI: https://doi.org/10.1111/fog.12422

Downloads

Published

16.06.2025

How to Cite

Monitoring marine heatwaves in Salvador-BA using SiMCosta data. (2025). Ocean and Coastal Research, 73. https://doi.org/10.1590/