Monitoring marine heatwaves in Salvador-BA using SiMCosta data
DOI:
https://doi.org/10.1590/Keywords:
Sea surface temperature anomalies, Local climate extremes, Ocean observationAbstract
The frequency, duration, and intensity of Marine Heatwaves (MHWs) have been increasing, with a notable trend
in the South Atlantic. This study investigates MHW occurrences over the past five years (August 2019 to April
2024) using sea surface temperature (SST) data from the Tracker tool and the SiMCosta BA01 buoy, located in
Salvador, Bahia, Brazil. The Tracker identified 23 MHW events, while the SiMCosta buoy revealed 42 events,
indicating greater variability due to local dynamics. A particularly significant event occurred in March 2024, with
a maximum SST anomaly of 2.61ºC. The onset of this warming coincided with an extreme El Niño in the Tropical
Pacific, suggesting a possible interaction between global climate patterns and local extremes. The identification
and analysis of MHW events using the SiMCosta buoy highlight the need for continuous and detailed monitoring
of meteorological and oceanographic data to better assess and understand local climatic extremes and their
impacts, especially on marine ecosystems and regional economic activities.
Downloads
References
Amaya, D. J. & Foltz, G. R. 2014. Impacts of canonical
and Modoki El Niño on tropical Atlantic SST. Journal of
Geophysical Research: Oceans, 119(2), 777–789. DOI:
https://doi.org/10.1002/2013JC009476
Cai, W., McPhaden, M. J., Grimm, A. M., Rodrigues, R. R.,
Taschetto, A. S., Garreaud, R. D., Dewitte, B., Poveda,
G., Ham, Y.-G., Santoso, A., Ng, B., Anderson, W.,
Wang, G., Geng, T., Jo, H.-S., Marengo, J. A., Alves,
L. M., Osman, M., Li, S., Wu, L., Karamperidou, C.,
Takahashi, K. & Vera, C. 2020. Climate impacts of the
El Niño–Southern Oscillation on South America. Nature
Reviews Earth & Environment, 1(4), 215–231. DOI:
https://doi.org/10.1038/s43017-020-0040-3
Cheung, W. W. L. & Frölicher, T. L. 2020. Marine heatwaves
exacerbate climate change impacts for fisheries in the
northeast Pacific. Scientific Reports, 10(1), 6678. DOI:
https://doi.org/10.1038/s41598-020-63650-z
Chiang, J. C. H. & Vimont, D. J. 2004. Analogous Pacific
and Atlantic Meridional Modes of Tropical Atmosphere–
Ocean Variability*. Journal of Climate, 17(21), 4143–
DOI: https://doi.org/10.1175/JCLI4953.1
Clark, N. E., Eber, L. E., Laurs, R. M., Renneer, J. A. &
Saur, J. F. T. (1974). Heat exchange between ocean
and atmosphere in the eastern North Pacific for
Monitoring marine heatwaves using SiMCosta data
Ocean and Coastal Research 2025, v73:e25023 9
Destéfani and Garcia
-71. Seattle, National Oceanic and Atmospheric
Administration.
Costa, N. V. & Rodrigues, R. R. 2021. Future Summer Marine
Heatwaves in the Western South Atlantic. Geophysical
Research Letters, 48(22), e2021GL094509. DOI:
https://doi.org/10.1029/2021GL094509
Dong, S., Lopez, H., Lee, S., Meinen, C. S., Goni, G. &
Baringer, M. 2020. What Caused the Large‐Scale
Heat Deficit in the Subtropical South Atlantic Ocean
During 2009–2012? Geophysical Research Letters,
(11), e2020GL088206. DOI: https://doi.org/10.1029/
GL088206
Drumond, A., Marengo, J., Ambrizzi, T., Nieto, R.,
Moreira, L. & Gimeno, L. 2014. The role of the Amazon
Basin moisture in the atmospheric branch of the
hydrological cycle: a Lagrangian analysis. Hydrology
and Earth System Sciences, 18(7), 2577–2598. DOI:
https://doi.org/10.5194/hess-18-2577-2014
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B. &
Young, G. S. 1996. Bulk parameterization of air‐sea
fluxes for Tropical Ocean‐Global Atmosphere Coupled‐
Ocean Atmosphere Response Experiment. Journal of
Geophysical Research: Oceans, 101(C2), 3747–3764.
DOI: https://doi.org/10.1029/95JC03205
Ferreira, L. C. L., Grillo, A. C., Repinaldo Filho, F. P. M.,
Souza, F. N. R. & Longo, G. O. 2021. Different responses
of massive and branching corals to a major heatwave at
the largest and richest reef complex in South Atlantic.
Marine Biology, 168(5), 54. DOI: https://doi.org/10.1007/
s00227-021-03863-6
Foltz, G. R., McPhaden, M. J. & Lumpkin, R. 2012. A Strong
Atlantic Meridional Mode Event in 2009: The Role of
Mixed Layer Dynamics*. Journal of Climate, 25(1), 363–
DOI: https://doi.org/10.1175/JCLI-D-11-00150.1
Fung, I. Y., Harrison, D. E. & Lacis, A. A. 1984. On the
variability of the net longwave radiation at the ocean
surface. Reviews of Geophysics, 22(2), 177–193. DOI:
https://doi.org/10.1029/RG022i002p00177
Garfinkel, C. I. & Hartmann, D. L. 2010. Influence of the
quasi‐biennial oscillation on the North Pacific and El
Niño teleconnections. Journal of Geophysical Research:
Atmospheres, 115(D20), 2010JD014181. DOI: https://
doi.org/10.1029/2010JD014181
Giannini, A., Saravanan, R. & Chang, P. 2004. The
preconditioning role of Tropical Atlantic Variability in the
development of the ENSO teleconnection: implications
for the prediction of Nordeste rainfall. Climate Dynamics,
(8), 839–855. DOI: https://doi.org/10.1007/s00382-
-0420-2
González Hernández, M. M., León, C. J., García, C. & Lam-
González, Y. E. 2023. Assessing the climate-related risk
of marine biodiversity degradation for coastal and marine
tourism. Ocean & Coastal Management, 232, 106436.
DOI: https://doi.org/10.1016/j.ocecoaman.2022.106436
Grimm, A. M., Barros, V. R. & Doyle, M. E. 2000. Climate
Variability in Southern South America Associated
with El Niño and La Niña Events. Journal of
Climate, 35–58. DOI: https://doi.org/10.1175/1520-
(2000)013<0035:CVISSA>2.0.CO;2
Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A.,
Straub, S. C., Oliver, E. C. J., Benthuysen, J. A., Burrows,
M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore,
P. J., Scannell, H. A., Sen Gupta, A. & Wernberg, T. 2016.
A hierarchical approach to defining marine heatwaves.
Progress in Oceanography, 141, 227–238. DOI: https://
doi.org/10.1016/j.pocean.2015.12.014
Hobday, A. J., Oliver, E. C. J., Gupta, A. S., Benthuysen, J. A.,
Burrows, M. T., Donat, M. G., Holbrook, N. J., Moore,
P. J., Thomsen, M. S., Wernberg, T. & Smale, D. A.
Categorizing and Naming MARINE HEATWAVES.
Oceanography, 31(2), 162–173. Accessed: https://www.
jstor.org/stable/26542662
Hoerling, M. P., Kumar, A. & Zhong, M. 1997. El Niño, La
Niña, and the Nonlinearity of Their Teleconnections.
Journal of Climate, 10(8), 1769–1786. DOI: https://doi.
org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0
.CO;2
Hsiung, J. 1985. Estimates of Global Oceanic Meridional
Heat Transport. Journal of Physical Oceanography,
(11), 1405–1413. DOI: https://doi.org/10.1175/1520-
(1985)015<1405:EOGOMH>2.0.CO;2
Hughes, T. P., Kerry, J. T. & Simpson, T. 2018. Large‐scale
bleaching of corals on the Great Barrier Reef. Ecology,
(2), 501–501. DOI: https://doi.org/10.1002/ecy.2092
Li, Y., Xie, S., Lian, T., Zhang, G., Feng, J., Ma, J., Peng, Q.,
Wang, W., Hou, Y. & Li, X. 2023. Interannual Variability
of Regional Hadley Circulation and El Niño Interaction.
Geophysical Research Letters, 50(4), e2022GL102016.
DOI: https://doi.org/10.1029/2022GL102016
Morgan, K. M., Perry, C. T., Johnson, J. A. & Smithers,
S. G. 2017. Nearshore Turbid-Zone Corals Exhibit
High Bleaching Tolerance on the Great Barrier Reef
Following the 2016 Ocean Warming Event. Frontiers in
Marine Science, 4, 224. DOI: https://doi.org/10.3389/
fmars.2017.00224
Medeiros, F. J. & Oliveira, C. P. 2021. Dynamical
Aspects of the Recent Strong El Niño Events and
Its Climate Impacts in Northeast Brazil. Pure and
Applied Geophysics, 178(6), 2315–2332. DOI: https://
doi.org/10.1007/s00024-021-02758-3
Neelin, J. D., Chou, C. & Su, H. 2003. Tropical drought
regions in global warming and El Niño teleconnections.
Geophysical Research Letters, 30(24), 2003GL018625.
DOI: https://doi.org/10.1029/2003GL018625
Nobre, P. & Srukla, J. 1996. Variations of Sea Surface
Temperature, Wind Stress, and Rainfall over the
Tropical Atlantic and South America. Journal of Climate,
(10), 2464–2479. DOI: https://doi.org/10.1175/1520-
(1996)009<2464:VOSSTW>2.0.CO;2
Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J.,
Smale, D. A., Alexander, L. V., Benthuysen, J. A., Feng,
M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-
Kirkpatrick, S. E., Scannell, H. A., Straub, S. C. & Wernberg,
T. 2018. Longer and more frequent marine heatwaves over
the past century. Nature Communications, 9(1), 1324. DOI:
https://doi.org/10.1038/s41467-018-03732-9
Reed, R. K. 1977. On Estimating Insolation over the Ocean.
Journal of Physical Oceanography, 7(3), 482–485. DOI:
https://doi.org/10.1175/1520-0485(1977)007<0482:OEI
OTO>2.0.CO;2
Roberts, S. D., Van Ruth, P. D., Wilkinson, C., Bastianello,
S. S. & Bansemer, M. S. 2019. Marine Heatwave,
Monitoring marine heatwaves using SiMCosta data
Ocean and Coastal Research 2025, v73:e25023 10
Destéfani and Garcia
Harmful Algae Blooms and an Extensive Fish Kill
Event During 2013 in South Australia. Frontiers in
Marine Science, 6, 610. DOI: https://doi.org/10.3389/
fmars.2019.00610
Rodrigues, R. R., Haarsma, R. J., Campos, E. J. D. &
Ambrizzi, T. 2011. The Impacts of Inter–El Niño Variability
on the Tropical Atlantic and Northeast Brazil Climate.
Journal of Climate, 24(13), 3402–3422. DOI: https://
doi.org/10.1175/2011JCLI3983.1
Rodrigues, R. R. & McPhaden, M. J. 2014. Why did the
–2012 La Niña cause a severe drought in the Brazilian
Northeast? Geophysical Research Letters, 41(3), 1012–
DOI: https://doi.org/10.1002/2013GL058703
Schlegel, R. W. (2020). Marine heatwave tracker. See
http://www.marineheatwaves.org/tracker.
Smith, K. E., Burrows, M. T., Hobday, A. J., Sen Gupta, A.,
Moore, P. J., Thomsen, M., Wernberg, T. & Smale, D. A.
Socioeconomic impacts of marine heatwaves:
Global issues and opportunities. Science, 374(6566),
eabj3593. DOI: https://doi.org/10.1126/science.abj3593
Taschetto, A. S., Ummenhofer, C. C., Stuecker, M. F.,
Dommenget, D., Ashok, K., Rodrigues, R. R. &
Yeh, S. 2020. ENSO Atmospheric Teleconnections.
In: McPhaden, M. J., Santoso, A., & Cai, W. (Eds).
Geophysical Monograph Series (pp. 309–335). Wiley.
Tedeschi, R. G., Grimm, A. M. & Cavalcanti, I. F. A. 2015.
Influence of Central and East ENSO on extreme events
of precipitation in South America during austral spring
and summer. International Journal of Climatology, 35(8),
–2064. DOI: https://doi.org/10.1002/joc.4106
Vogt, L., Burger, F. A., Griffies, S. M. & Frölicher, T. L.
Local Drivers of Marine Heatwaves: A Global
Analysis With an Earth System Model. Frontiers in
Climate, 4, 847995. DOI: https://doi.org/10.3389/
fclim.2022.847995
Yang, Q., Cokelet, E. D., Stabeno, P. J., Li, L., Hollowed,
A. B., Palsson, W. A., Bond, N. A. & Barbeaux, S. J.
How “The Blob” affected groundfish distributions
in the Gulf of Alaska. Fisheries Oceanography, 28(4),
–453. DOI: https://doi.org/10.1111/fog.12422
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Bruna Alves Oliveira Destéfani, Carlos Alberto Eiras Garcia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.
