Major diseases in edible red algae Pyropia under aquaculture: Infectious agents and procedure, detection, influencing factors, prevention, and treatment
DOI:
https://doi.org/10.1590/Keywords:
Pyropia, Red algae, Seaweed cultivation, Pathogen, Algal diseaseAbstract
The red algae, Pyropia has been one of the major edible marine algae in East Asian countries especially in
China, Japan, and South Korea for several hundred years and it has recently become a global food ingredient.
Cultivating methods have been developed along Pyropia’s unique life cycle and to improve harvest yield and
product quality. Various red algal diseases are caused by oomycetes, bacteria, viruses, or diatoms. Outbreaks
of red-rot disease, Olpidiopsis disease, green-spot disease, and diatom-related diseases such as diatom felt and
diatom blooms have been reported as major concerns in Pyropia aquaculture, as they bring serious damage
to sea farms by inhibiting crop growth, destroying thalli of Pyropia, and/or exhausting nutrients. In this study,
we review the causative agents, infection or impacting processes, detection methods, influencing factors,
prevention strategies, and treatments for these four major diseases, namely red-rot disease, Olpidiopsis
disease, green-spot disease, and diatom-related disease, and discuss remaining knowledge gaps and related
or additional issues.
Downloads
References
Addepalli, M. K. & Fujita, Y. 2001. Serological detection of
red rot disease initiation stages of microbial pathogen,
Pythium porphyrae (Oomycota) on Porphyra yezoensis.
Journal of Applied Phycology, 13, 219–25.
Addepalli, M. K. & Fujita, Y. 2002. Regulatory role of
external calcium on Pythium porphyrae (Oomycota)
zoospore release, development and infection in causing
red rot disease of Porphyra yezoensis (Rhodophyta).
FEMS Microbiology Letters, 211(2), 253–7. DOI:
https://doi.org/10.1111/j.1574-6968.2002.tb11233.x
Akizuki, A., Tabata, M. & Kawamura, Y. 2007. Disinfectant
effects of lactic acid on Pythium porphyrae as acid
treatment agent. Aquaculture Science, 55(3), 325–30.
DOI: https://doi.org/10.11233/aquaculturesci1953.55.325
Amano, H., Sakaguchi, K., Maegawa, M. & Noda, H. 1996.
The use of a monoclonal antibody for the detection of
fungal parasite, Pythium sp., the causative organism of
red rot disease, in seawater from Porphyra cultivation
farms. Fisheries science, 62(4), 556–60.
Amano, H., Suginaga, R., Arashima, K. & Noda, H.
Immunological detection of the fungal parasite,
Pythium sp.; the causative organism of red rot disease
in Porphyra yezoensis. Journal of Applied Phycology, 7,
–8. DOI: https://doi.org/10.1007/BF00003550
Arasaki, S. 1947. Studies on the wasting disease of
the cultured lavers (Porphyra tenera). Bulletin of the
Japanese Society for the Science of Fish, 13, 74–90.
Arasaki, S. 1960. A chytridean parasaite on the Porphyra.
Nippon Suisan Gakkaishi, 26, 543–8.
Badis, Y., Han, J.W., Klochkova, T.A., Gachon, C.M.M. &
Kim, G.H. 2020. The gene repertoire of Pythium
porphyrae (Oomycota) suggests an adapted plant
pathogen tackling red algae. Algae, 35, 133–44.
Bae, H.-J., Bang, Y.-J., Jeong, J.-A., Kim, W.-K.,
Lee, H., Moon, S. Y. & Jeong, T.-Y. 2024. Differential
surface microbial community and thalli metabolome
as early indicators of disease in red algae Pyropia
yezoensis. Aquaculture International, 32, 1-18. DOI:
https://doi.org/10.1007/s10499-024-01600-6
Bae, S.-H. 1991. The origin and development process of laver
culture industry in South Korea-1. Laver culture history
till the end of Chosun dynasty. South Korean Journal of
Fisheries and Aquatic Sciences, 24(3), 153–66.
Blouin, N. A., Brodie, J. A., Grossman, A. C., Xu, P. &
Brawley, S. H. 2011. Porphyra: a marine crop shaped
by stress. Trends in Plant Science, 16(1), 29–37.
DOI: https://doi.org/10.1016/j.tplants.2010.10.004
Brodie, J & Irvine, L. M. 2003 Seaweeds of the British Isles
Volume 1 Rhodophyta Part 3B Bangiophycidae. Natural
History Museum, London.
Cho, K., Heo, J., Lee, S. M., Han, J., Hong, H. D., Jeon, H.,
Hwang, H.J., Baek, K. & Han, J. W. 2020. Discoloration
in the marine red algae Pyropia: causative factors and
exploiting the biotechnological potential of a waste
resource. Reviews in Aquaculture, 13(2), 822–835.
DOI: https://doi.org/10.1111/raq.12500
Crawford, R. M. & Gardner, C. 1997. The transfer
of Asterionellopsis kariana to the new genus
Asteroplanus (Bacillariophyceae), with reference
to the fine structure. Nova Hedwigia, 47–57. DOI:
https://doi.org/10.1127/nova.hedwigia/65/1997/47
De Cock, A. W. A. M. 1986. Marine Pythiaceae from
decaying seaweeds in the Netherlands. Mycotaxon,
(1), 101–10.
Diehl, N., Kim, G. H. & Zuccarello, G. C. 2017. A pathogen of
New Zealand Pyropia plicata (Bangiales, Rhodophyta),
Pythium porphyrae (Oomycota). Algae, 32, 29–39.
Ding, H. & Ma, J. 2005. Simultaneous infection by red
rot and chytrid diseases in Porphyra yezoensis
Ueda. Journal of Applied Phycology, 17, 51–6. DOI:
https://doi.org/10.1007/s10811-005-5523-6
FAO 2024. FAO Fisheries and Aquaculture - Global
Statistical Collections. In: FAO Fisheries and Aquaculture
Division [online]. Available from: https://www.fao.org/
fishery/en/statistics. Access date: 2024 Jun. 13.
Fujita, Y., Zenitani, B., Nakao, Y. & Matsubara, T. 1972.
Bacteriological studies on diseases of cultured
laver—II. Bacteria associated with diseased laver.
Bulletin of the Japanese Society of Scientific Fisheries,
(6), 565–569.
Fujita, Y. & Migita, S. 1980. Death of parasitic Pythium
porphyrae by drying and freeze-preservation of red
rot infected thalli of Porphyra yezoensis. Bulletin of the
Faculty of Fisheries, Nagasaki University, 49, 11–16.
Fujita, Y. 1990. Diseases of cultivated Porphyra in
Japan. Introduction to applied phycology. 177–90.
Fujitake, F., Kuno, K. & Igata, K. 2009. Occurrence of red
rot disease and chytrid blight disease in nori [Porphyra]
culture farms of Saga [Japan] Prefecture in the inner
part of Ariake Sea. Bulletin of Saga Prefectural Ariake
Fisheries Research and Development Center (Japan).
Gachon, C. M. M., Sime-Ngando, T.,
Strittmatter, M., Chambouvet, A. & Kim, G. H.
Algal diseases: spotlight on a black box.
Trends in Plant Science, 15(11), 633–40. DOI:
https://doi.org/10.1016/j.tplants.2010.08.005
Major diseases in edible red algae Pyropia under aquaculture
Ocean and Coastal Research 2025, v73:e25022 17
Bae and Jeon
Han, X., Mao, Y., Li, J., Li, G., Li, C., Liu, L. & Mo, Z.
Identification and pathogenecity of a novel
pathogen causing green rot disease in Porphyra
haitanensis. Journal of Fisheries of China, 39, 1721–9.
He, P. M., Zhang, Z. Y., Zhang, X. C., & Ma, J. H. 2018.
Seaweed cultivation. Sciences Academic Press.
Hwang, E. K. & Park, C. S. 2020. Seaweed cultivation and
utilization of South Korea. Algae, 35, 107–21.
Hwang, E. K., Park, C. S. & Kakinuma, M. 2009.
Physicochemical responses of Pythium porphyrae
(Oomycota), the causative organism of red rot disease
in Porphyra to acidification. Aquaculture Research,
(15), 1777–84. DOI: https://doi.org/10.1111/
j.1365-2109.2009.02284.x
Kang, E. J. & Kim, J.-H. 2022. Development of an
efficiency criterion for the removal of pest organisms
(ulvoid green algae and diatoms) from Neopyropia
aquaculture using the acid wash (pH shock) method.
Aquaculture, 548, 737677. DOI: https://doi.org/
1016/j.aquaculture.2021.737677
Kawamura, Y., Yokoo, K., Tojo, M. & Hishiike, M. 2005.
Distribution of Pythium porphyrae, the causal agent of
red rot disease of Porphyrae spp., in the Ariake Sea,
Japan. Plant Disease, 89, 1041–7. DOI: https://doi.org/
1094/PD-89-1041
Kim, G. H., Klochkova, T. A. & Im, S. H. 2016. Chloroplast
virus causes green-spot disease in cultivated Pyropia
of South Korea. Algal Research. 17, 293–99. DOI:
https://doi.org/10.1016/j.algal.2016.05.023
Kim, G. H., Moon, K.-H., Kim, J.-Y., Shim, J. &
Klochkova, T. A. 2014. A revaluation of algal diseases
in South Korean Pyropia (Porphyra) sea farms and
their economic impact. Algae. 29(4), 249–65. DOI:
https://doi.org/10.4490/algae.2014.29.4.249
Kim, J. 2015. Life history and infection mechanism of
Pythium porphyrae, a causative agent of red-rot
disease in Pyropia spp. Master dissertation, Kongju
National University, Kongju, 60pp. (In South Korean
with English abstract)
Kim, J.-R., Shin, Y.-K., Lee, G.-H. & Lee, W.-H. 1991.
A Study on the relationships between the epiphytic
microbes and the blight of Porphyra species
from the coastal waters of the Yellow Sea, South
Korea 1. Species composition and standing stocks
of epiphytic diatom and ambient water phytoplankton.
South Korean Journal of Fisheries and Aquatic
Sciences, 24, 79–88.
Kim, Y.T., Kim, R., Shim, E., Park, H., Klochkova, T.A.,
Kim, G.H., Kim, Y.T., Kim, R., Shim, E. & Park, H.
Control of oomycete pathogens during Pyropia
farming and processing using calcium propionate.
Algae, 38(1), 71–80.
Klochkova, T. A., Jung, S. & Kim, G. H. 2017. Host
range and salinity tolerance of Pythium porphyrae
may indicate its terrestrial origin. Journal of Applied
Phycology, 29, 371–9. DOI: https://doi.org/10.1007/
s10811-016-0947-8
Klochkova, T. A., Shim, J. B., Hwang, M. S. & Kim, G. H.
Host–parasite interactions and host species
susceptibility of the marine oomycete parasite,
Olpidiopsis sp., from South Korea that infects red algae.
Journal of Applied Phycology, 24(1), 135–44. DOI:
https://doi.org/10.1007/s10811-011-9661-8
Klochkova, T. A., Shin, Y. J., Moon, K.-H., Motomura, T. &
Kim, G. H. 2016. New species of unicellular obligate
parasite, Olpidiopsis pyropiae sp. nov., that
plagues Pyropia sea farms in South Korea.
Journal of Applied Phycology, 28(1), 73–83. DOI:
https://doi.org/10.1007/s10811-015-0595-4
Lee, J. M. & Lee, J. H. 2012. Morphological study of the
genus Eucampia (Bacillariophyceae) in South Korean
coastal waters. Algae, 27, 235–47.
Lee, S. J., Park, S. W., Lee, J. H. & Kim, Y. S. 2012.
Diseases of the cultivated Porphyra at Seocheon
area. Journal of fish pathology, 25(3), 249–56. DOI:
https://doi.org/10.7847/jfp.2012.25.3.249
Lee, S. D., Park, J. S. & Lee, J. H. 2013. Taxonomic
study of the genus Achnanthes (Bacillariophyta) in
South Korean coastal waters. Journal of Ecology and
Environment, 36(4), 391–406. DOI: https://doi.org/
5141/ecoenv.2013.391
Lee, S. J. & Lee, S. R. 2022. Rapid Detection of Red
Rot Disease Pathogens (Pythium chondricola and
P. porphyrae) in Pyropia yezoensis (Rhodophyta)
with PCR-RFLP. Plant Disease, 106, 30–33.
DOI: https://doi.org/10.1094/PDIS-07-21-1494-SC
Lee, S. J., Hwang, M. S., Park, M., Baek, J. M., Ha, D.-S.,
Lee, J. E. & Lee, S.-R. 2015. Molecular identification of
the algal pathogen Pythium chondricola (Oomycetes)
from Pyropia yezoensis (Rhodophyta) using ITS and
cox1 markers. Algae, 30, 217–22.
Lee, S. J., Jee, B. Y., Son, M.-H. & Lee, S.-R. 2017.
Infection and cox2 sequence of Pythium chondricola
(Oomycetes) causing red rot disease in Pyropia
yezoensis (Rhodophyta) in South Korea. Algae, 32,
–60.
Lee, W. H. & Kim, J. R. 1989. A quantitative study on
the epiphytic diatoms of Porphyra species from
the coastal waters of the Yellow Sea. South Korea.
Marine Development Research Kunsan National
University, 1, 51–66.
Li, J., Mou, Z. J., Yang, H. C., Mao, Y. X., Yan, Y. W. &
Mo, Z. L. 2018. Isolation and identification the
pathogen of Pyropia yezoensis green spot disease.
Progress in Fishery Science, 40(4), 140-146. DOI:
https://doi.org/10.19663/j.issn2095-9869.20180710002
Liu, J., Xia, S., Yang, H., Mo, Z., Li, J., & Yan, Y. 2024.
Quantitative detection of Pythium porphyrae and
Pythium chondricola (Oomycota), the causative
agents of red rot disease in Pyropia farms in China.
Algae, 39(3), 177-186.
MAFF 2024. Fisheries Census. Available from: https://
www.e-stat.go.jp. Access date: 2024 Jun. 13.
Migita, S. 1969. Olpidiopsis disease of culture Porphyra.
Bulletin of the Faculty of Fisheries, Nagasaki University,
, 131–45.
Mikami, K., Li, L. & Takahashi, M. 2012. Monosporebased asexual life cycle in Porphyra yezoensis.
Frontiers in Physiological and Molecular Biological
Research, 15–37.
Miyahara, K., Nagai, S., Itakura, S., Yamamoto, K.,
Fujisawa, K., Iwamoto, T., Yoshimatsu, S., Matsuoka, S.,
Major diseases in edible red algae Pyropia under aquaculture
Ocean and Coastal Research 2025, v73:e25022 18
Bae and Jeon
Yuasa, A., Makino, K., Hori, Y., Nagata, S., Nagasaki, K.,
Yamaguchi, M., Honjo, T. 1996. First Record of a
Bloom of Thalassiosira diporocyclus in the Eastern
Seto Inland Sea. Fisheries science, 62(6), 878–82.
DOI: https://doi.org/10.2331/fishsci.62.878
Mo, Z., Li, S., Kong, F., Tang, X. & Mao, Y. 2016.
Characterization of a novel fungal disease that infects
the gametophyte of Pyropia yezoensis (Bangiales,
Rhodophyta). Journal of Applied Phycology, 28, 395–404.
DOI: https://doi.org/10.1007/s10811-015-0539-z
MOF 2024. Fisheries statistics. Available from: https://www.
mof.go.kr/statPortal. Access date: 2024 Jun. 13.
Moon, K.-H. 2015. Studies on algal diseases in Pyropia
farms in South Korea. (Ph.D. dissertation). Kongju:
Kongju National University.
Mou, Z. 2012. Etiological Study on Pyropia/Porphyra
yezoensis and Screening of Agarase-producing
Bacteria. (Master dissertation). Qingdao: Ocean
University of China.
Muñoz, L., Patiño, D. J. & Murúa, P. 2024. Natural
biocontrol of a Porphyra sp. pest on farmed Gracilaria
chilensis by a pythiosis outbreak. Journal of Applied
Phycology, 36, 2029-37. DOI: https://doi.org/10.1007/
s10811-024-03228-8
Nagai, S., Hori, Y., Manabe, T. & Imai, I. 1995. Morphology
and Rejuvenation of Coscinodiscus wailesii GRAN
(Bacillariophyceae) Resting Cells Found in Bottom
Sediments of Harima-Nada, Seto Inland Sea, Japan.
NIPPON SUISAN GAKKAISHI, 61(2), 179–85. DOI:
https://doi.org/10.2331/suisan.61.179
Nagano, Y., Kimura, K., Kobayashi, G. & Kawamura, Y.
Genomic diversity of 39 samples of Pyropia
species grown in Japan. Plos one, 16(6), e0252207.
DOI: https://doi.org/10.1371/journal.pone.0252207
Nakao, Y., Onohara, T., Zenitani, B., Fujita, Y. &
MATSUBAR., T. 1972. BACTERIOLOGICAL STUDIES
ON DISEASES OF CULTURED LAVER. 1. GREEN
SPOT ROTTING-LIKE DETERIORATION OF LAVER
FROND BY BACTERIA, IN-VITRO. Bulletin of the
Japanese Society of Scientific Fisheries, 38(6), 561.
DOI: https://doi.org/10.2331/suisan.38.561
Nguyen, H. D. T., Dodge, A., Dadej, K., Rintoul, T. L.,
Ponomareva, E., Martin, F. N., De Cock, A. W. A. M.,
Lévesque, C. A., Redhead, S. A. & Spies, C. F. J.
Whole genome sequencing and phylogenomic
analysis show support for the splitting of genus
Pythium. Mycologia, 114(3), 501–515. DOI:
https://doi.org/10.1080/00275514.2022.2045116
Nishikawa, T. 2002. Effects of temperature, salinity and
irradiance on the growth of the diatom Eucampia
zodiacus caused bleaching of seaweed Porphyra
isolated from Harima-Nada, Seto Inland Sea, Japan.
NIPPON SUISAN GAKKAISHI, 68, 356–61.
Nishikawa, T., Hori, Y., Tanida, K. & Imai, I. 2007.
Population dynamics of the harmful diatom Eucampia
zodiacus Ehrenberg causing bleachings of Porphyra
thalli in aquaculture in Harima-Nada, the Seto
Inland Sea, Japan. Harmful Algae, 6(6), 763–73. DOI:
https://doi.org/10.1016/j.hal.2007.04.005
Nishikawa, T. & Yamaguchi, M. 2006. Effect of
temperature on light-limited growth of the harmful
diatom Eucampia zodiacus Ehrenberg, a causative
organism in the discoloration of Porphyra thalli.
Harmful Algae, 5, 141–7.
Noda, H., Amano, H., Ohta, F. & Horiguchi, Y. 1979.
The effects of amino acids in curing and preventing
“akagusare”, red rot disease, of the laver Porphyra
spp. Bulletin of the Japanese Society of Scientific
Fisheries, 45(9), 1155–1162.
Noda, H. 1993. Health benefits and nutritional properties
of nori. Journal of Applied Phycology, 5, 255–8.
DOI: https://doi.org/10.1007/BF00004027
Ohgai, M. 1986. Studies on the morphology and ecology
of epiphytic and epilithic diatoms in Nori cultivation
grounds. Journal of the Shimonoseki University of
Fisheries, 34, 2 (In Japanese with English abstract)
Park, C., Sakaguchi, K., Kakinuma, M. & Amano, H. 2000.
Comparison of the morphological and physiological
features of the red rot disease fungus Pythium sp.
isolated from Porphyra yezoensis from South Korea
and Japan. Fisheries science, 66(2000), 261–9.
DOI: https://doi.org/10.1046/j.1444-2906.2000.00043.x
Park, C. S., Kakinuma, M. & Amano, H. 2001. Detection of
the red rot disease fungi Pythium spp. by polymerase
chain reaction. Fisheries science, 67, 197–9.
Park, J.H. 2020. Priming of resistance against oomycete
pathogens through desiccation and freezing in Pyropia
yezoensis (Rhodophyta). (Master dissertation). Kongju:
Kongju National University.
Patil, V., Sun, L., Mohite, V., Liang, J., Wang, D., Gao, Y. &
Chen, C. 2024. Effect of benthic and planktonic
diatoms on the growth and biochemical composition
of the commercial macroalga Pyropia haitanensis.
Marine Pollution Bulletin, 203, 116411. DOI:
https://doi.org/10.1016/j.marpolbul.2024.116411
Qiu, L., Mao, Y., Tang, L., Tang, X. & Mo, Z. 2019.
Characterization of Pythium chondricola associated
with red rot disease of Pyropia yezoensis (Ueda)
(Bangiales, Rhodophyta) from Lianyungang, China.
Journal of Oceanology and Limnology, 37(2), 1102–12.
DOI: https://doi.org/10.1007/s00343-019-8075-3
Robideau, G. P., De Cock, A. W., Coffey, M. D.,
Voglmayr, H., Brouwer, H., Bala, K., Chitty, D. W.,
Desaulniers, N., Eggertson, Q. A., Gachon, C. M. M.,
Hu, C.-H., Küpper, F. C., Rintoul, T. L., Sarhan, E.,
Verstappen, E. C. P., Zhang, Y., Bonants, P. J. M.,
Ristaino, J. B., & Lévesque, C. A. 2011. DNA barcoding
of oomycetes with cytochrome c oxidase subunit I
and internal transcribed spacer. Molecular ecology
resources, 11(6), 1002-1011. DOI: https://doi.org/
1111/j.1755-0998.2011.03041.x
Saito, Y., Matsusato, T. & Yoshikawa, K. 1972.
On the symptoms of “green spot” and “crape”
in nori (Porphyra) culture. Bulletin of Nansei
National Fisheries Research Institute, 5, 1–9. DOI:
https://doi.org/10.1007/s00343-019-9045-5
Sekimoto, S., Yokoo, K., Kawamura, Y. & Honda, D. 2008.
Taxonomy, molecular phylogeny, and ultrastructural
morphology of Olpidiopsis porphyrae sp. nov.
(Oomycetes, straminipiles), a unicellular obligate
endoparasite of Bangia and Porphyra spp. (Bangiales,
Rhodophyta). Mycological Research, 112(3), 361–74.
DOI: https://doi.org/10.1016/j.mycres.2007.11.002
Major diseases in edible red algae Pyropia under aquaculture
Ocean and Coastal Research 2025, v73:e25022 19
Bae and Jeon
Shikata, T., Matsubara, T., Yoshida, M., Sakamoto, S. &
Yamaguchi, M. 2015. Effects of temperature, salinity,
and photosynthetic photon flux density on the growth
of the harmful diatom Asteroplanus karianus in the
Ariake Sea, Japan. Fisheries science, 81, 1063–9.
DOI: https://doi.org/10.1007/s12562-015-0930-3
Sunairi, M., Tsuchiya, H., Tsuchiya, T., Omura, Y.,
Koyanagi, Y., Ozawa, M., Iwabuchi, N. et al.
Isolation of a bacterium that causes anaaki
disease of the red algae Porphyra yezoensis.
Journal of Applied Bacteriology, 79(2), 225–9. DOI:
https://doi.org/10.1111/j.1365-2672.1995.tb00939.x
Takahashi, M. 1977. Pythium porphyrae Takahashi
et Sasaki, sp. nov. causing red rot of marine red
algae Porphyra spp. Transactions of the Mycological
Society of Japan, 18(3), 279–85.
Takahashi, M. & Mikami, K. 2017. Oxidative stress
promotes asexual reproduction and apogamy in
the red seaweed Pyropia yezoensis. Frontiers in
Plant Science, 8, 62. DOI: https://doi.org/10.3389/
fpls.2017.00062
Tsuchiya, H. 1984. Nori no kasho `anaaki-sho’ ni tsuite
(About the disease of Porphyra, tentatively named
’anaaki disease’). Chiba Prefectural Fisheries
Experimental Station Research Report, 67-71)
Uppalapati, S. R. & Fujita, Y. 2000. Carbohydrate regulation
of attachment, encystment, and appressorium
formation by Pythium porphyrae (Oomycota)
zoospores on Porphyra yezoensis (Rhodophyta).
Journal of Phycology, 36(2), 359–66. DOI:
https://doi.org/10.1046/j.1529-8817.2000.99099.x
Uppalapati, S. R., Kerwin, J. L. & Fujita, Y. 2001.
Epifluorescence and scanning electron microscopy
of host-pathogen interactions between Pythium
porphyrae (Peronosporales, Oomycota) and Porphyra
yezoensis (Bangiales, Rhodophyta). Botanica
Marina, 44(2), 139–145. DOI: https://doi.org/10.1515/
BOT.2001.019
Wen, X., Zuccarello, G. C., Klochkova, T. A. & Kim, G. H. 2023.
Oomycete pathogens, red algal defense mechanisms
and control measures. Algae, 38(4), 203–215.
Weng, P., Yang, H., Mo, Z., Zhang, W., Yan, Y., Rong, X. &
Li, J. 2024. Application and evaluation of probiotics
against red rot disease in Pyropia. Aquaculture,
, 740050. DOI: https://doi.org/10.1016/
j.aquaculture.2023.740050
Yamaguchi, H., Minamida, M., Matsubara, T. &
Okamura, K. 2014. Novel blooms of the diatom
Asteroplanus karianus deplete nutrients from Ariake
Sea coastal waters. Marine Ecology Progress Series,
, 51–60. DOI: https://doi.org/10.3354/meps11014
Yan, Y.-W., Yang, H.-C., Tang, L., Li, J., Mao, Y.-X. &
Mo, Z.-L. 2019. Compositional shifts of bacterial
communities associated with Pyropia yezoensis
and surrounding seawater co-occurring with red
rot disease. Frontiers in Microbiology, 10, 1666.
DOI: https://doi.org/10.3389/fmicb.2019.01666
Yang, H., Yan, Y., Li, J., Tang, L., Mao, Y. & Mo, Z.
a. Development of a PCR method for detection
of Pseudoalteromonas marina associated with
green spot disease in Pyropia yezoensis. Journal
of Oceanology and Limnology, 38, 168–76.
DOI: https://doi.org/10.1007/s00343-019-9045-5
Yang, L-E., Deng, Y-Y., Xu, G-P., Russell, S., Lu, Q-Q. &
Brodie, J. 2020b. Redefining Pyropia (Bangiales,
Rhodophyta): four new genera, resurrection of
Porphyrella and description of Calidia pseudolobata
sp. nov. from China. Journal of Phycology,
(4), 862–79. DOI: https://doi.org/10.1111/jpy.12992
Yokoo, K., Kawamura, Y. & Tojo, M. 1999. Oospore survival
of Pythium porphyrae, in sterile sediments. Bulletin
of Saga Prefectural Ariake Fisheries Experimental
Station, 19, 1–7.
Yokoo, K., Sekimoto, S., Kawamura, Y. & Honda, D. 2005.
The early detection of Olpidiopsis sp. (Oomycetes,
Chromista) which causes damage to nori [laver]
cultivation using a PCR. Bulletin of the Japanese
Society of Scientific Fisheries (Japan).
Yong, Y., Jiahai, M., Pu, X., Qihuan, S. & Hanqing, W.
Pseudoalteromonas citrea, the causative
agent of green-spot disease of Porphyrae yezoensis.
Zhongguo Shui Chan ke xue= Journal of Fishery
Sciences of China, 9, 353–8.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hyeon-Jeong Bae, Tae-Yong Jeong

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.
