Assessing chlorophyll-a retrieval of Sentinel-3 OLCI, VIIRS, MODIS and OC-CCI in Monterey Bay (California, USA)
DOI:
https://doi.org/10.1590/Keywords:
Ocean colour, Remote sensing, Chlorophyll-a, Sentinel, MODIS Aqua, OC-CCIAbstract
Advances in high-resolution satellite sensors and merged multi-sensor ocean colour products have improved
the detection of submesoscale features and enhanced the continuity of ocean surface measurements. This has
enabled more detailed observations of chlorophyll-a (chl-a) growth rates, biomass and biogeochemical fluxes.
Chl-a, a photosynthetic pigment in marine autotrophs, is used as a proxy for phytoplankton biomass and
primary productivity. The accurate estimation of surface chl-a via remote sensing is key to improving coastal
ocean process modelling. We compared chl-a products from sensors of multiple spatial resolutions, including
Sentinel-3 Ocean and Land Colour Imager (OLCI), the Moderate Resolution Imaging Spectroradiometer (Aqua)
(MODIS Aqua), the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi NPP and the Ocean Colour
Climate Change Initiative (OC-CCI) V6 product to two in situ datasets (M1 and C1) in Monterey Bay, California,
USA. Sentinel-3 consistently performed well under the Inverse Modelling Technique - Neural Network chl-a
algorithm, performing slightly better at station M1 (R2
M1 = 0.85, R2
C1 = 0.80). The Ocean Colour for MERIS
algorithm performed better at offshore station M1 (R2
M1 = 0.87) and yielded no matchups at C1. MODIS Aqua
and VIIRS performed poorly (R2
M1,MODIS = 0.32, R2
M1,VIIRS = 0.02, R2
C1,MODIS = 0.08, R2
C1,VIIRS = 0.25), likely inhibited
by calibration to global as opposed to regionally adapted datasets. OC-CCI, though blended for greater
continuity, produced fewer matchups at a higher accuracy (R2
M1, OC-CCI = 0.66, R2
C1, OC-CCI = 0.63) than MODIS
Aqua or VIIRS alone, but still less so than Sentinel-3 OLCI. All sensors either over- or under-estimated chl-a
at all concentrations, apart from OC-CCI, likely due to the complex coastal optical properties of the area. Our
results highlight the need for regional algorithm development and show the potential effectiveness of Sentinel-3
and OC-CCI products for future submesoscale process studies.
Downloads
References
Abbas, M. M., Melesse, A. M., Scinto, L. J. & Rehage,
J. S. 2019. Satellite Estimation of Chlorophyll-a Using
Moderate Resolution Imaging Spectroradiometer
(MODIS) Sensor in Shallow Coastal Water Bodies:
Validation and Improvement. Water, 11(8), 1621.
DOI: https://doi.org/10.3390/W11081621
Al-Naimi, N., Raitsos, D. E., Ben-Hamadou, R. & Soliman, Y.
Evaluation of Satellite Retrievals of Chlorophyll-a
in the Arabian Gulf. Remote Sensing, 9(3), 301.
DOI: https://doi.org/10.3390/RS9030301
Ali, K. A., Ortiz, J., Bonini, N., Shuman, M. & Sydow, C.
Application of Aqua MODIS sensor data for
estimating chlorophyll a in the turbid Case 2 waters
of Lake Erie using bio-optical models. GIScience and
Remote Sensing, 53(4), 483–505. DOI: https://doi.org/1
1080/15481603.2016.1177248
Angal, A., Xiong, X., Twedt, K., Chang, T., Geng, X.,
Aldoretta, E. & Díaz, C. P. 2023. Status of the Terra and
Aqua Modis Collection 7 L1B. IGARSS 2023 - 2023
IEEE International Geoscience and Remote Sensing
Symposium, 4466–4469. DOI: https://doi.org/10.1109/
IGARSS52108.2023.10283303
Ansper, A. & Alikas, K. 2018. Retrieval of Chlorophyll a
from Sentinel-2 MSI Data for the European Union Water
Framework Directive Reporting Purposes. Remote
Sensing, 11(1), 64. DOI: https://doi.org/10.3390/
RS11010064
Azmi, S., Agarwadkar, Y., Bhattacharya, M., Apte, M. &
Inamdar, A. 2015. Indicator Based Ecological Health
Analysis Using Chlorophyll and Sea Surface Temperature
Along with Fish Catch Data off Mumbai Coast. Turkish
Journal of Fisheries and Aquatic Sciences, 15(4), 923–
DOI: https://doi.org/10.4194/1303-2712-V15_4_16
Barnes, W. L. & Salomonson, V. V. 1992. MODIS:
a global imaging spectroradiometer for the Earth
Observing System. Applications in Optical Science
and Engineering, 10269, 280–302. DOI: https://doi.
org/10.1117/12.161578
Basu, S. & Mackey, K. R. M. 2018. Phytoplankton as
Key Mediators of the Biological Carbon Pump: Their
Responses to a Changing Climate. Sustainability, 10(3),
DOI: https://doi.org/10.3390/SU10030869
Binh, N. A., Hoa, P. V., Thao, G. T. P., Duan, H. D., & Thu,
P. M. (2022). Evaluation of Chlorophyll-a estimation
using Sentinel 3 based on various algorithms in
southern coastal Vietnam. International Journal of
Applied Earth Observation and Geoinformation, 112,
https://doi.org/10.1016/J.JAG.2022.102951
Breaker, L. C. 2005. What’s happening in Monterey Bay
on seasonal to interdecadal time scales. Continental
Shelf Research, 25(10), 1159–1193. DOI: https://doi.
org/10.1016/J.CSR.2005.01.003
Bricaud, A., Morel, A., Babin, M., Allali, K. & Claustre, H.
Variations of light absorption by suspended
particles with chlorophyll a concentration in oceanic
(Case 1) waters: Analysis and implications for
bio-optical models. Journal of Geophysical Research:
Oceans, 103(C13), 31033–31044. DOI: https://doi.
org/10.1029/98JC02712
Brockmann, C., Doerffer, R., Peters, M., Kerstin, S., Embacher,
S. & Ruescas, A. 2016. Evolution of the C2RCC Neural
Network for Sentinel 2 and 3 for the Retrieval of Ocean
Colour Products in Normal and Extreme Optically Complex
Waters. ESASP, 740, 54. Available from: https://ui.adsabs.
harvard.edu/abs/2016ESASP.740E..54B/abstract. Access
date: May 5 2025.
Campbell, J. W. 1995. The lognormal distribution as a
model for bio-optical variability in the sea. Journal
of Geophysical Research: Oceans, 100(C7),
–13254. DOI: https://doi.org/10.1029/95JC00458
Carswell, T., Costa, M., Young, E., Komick, N., Gower,
J. & Sweeting, R. 2017. Evaluation of MODIS-Aqua
Atmospheric Correction and Chlorophyll Products
of Western North American Coastal Waters Based
on 13 Years of Data. Remote Sensing, 9(10), 1063.
DOI: https://doi.org/10.3390/RS9101063
Cazzaniga, I., Bresciani, M., Colombo, R., Bella, V.
Della, Padula, R. & Giardino, C. 2019. A comparison
of Sentinel-3-OLCI and Sentinel-2-MSI-derived
Chlorophyll-a maps for two large Italian lakes. Remote
Sensing Letters, 10(10), 978–987. DOI: https://doi.org/1
1080/2150704X.2019.1634298
Chavez, F. P. 1996. Forcing and biological impact of onset
of the 1992 El Nino in central California, 23, 265–268.
DOI: https://doi.org/10.1029/96GL00017
Chen, J., Zhang, M., Cui, T. & Wen, Z. 2013. A review of
some important technical problems in respect of satellite
remote sensing of chlorophyll - A concentration in coastal
waters. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 6(5), 2275–2289.
DOI: https://doi.org/10.1109/JSTARS.2013.2242845
Chen, J., Zhu, W., Tian, Y. Q., Yu, Q., Zheng, Y. & Huang,
L. 2017. Remote estimation of colored dissolved
organic matter and chlorophyll-a in Lake Huron using
Sentinel-2 measurements. Journal of Applied Remote
Sensing, 11(3), 036007. DOI: https://doi.org/10.1117/1.
JRS.11.036007
Dall’Olmo, G. & Gitelson, A. A. 2005. Effect of bio-optical
parameter variability on the remote estimation of
chlorophyll-a concentration in turbid productive waters:
experimental results. Applied Optics, 44(3), 412–422.
DOI: https://doi.org/10.1364/AO.44.000412
Darecki, M., Weeks, A., Sagan, S., Kowalczuk, P. &
Kaczmarek, S. 2003. Optical characteristics of two
contrasting Case 2 waters and their influence on
remote sensing algorithms. Continental Shelf Research,
(3–4), 237–250. DOI: https://doi.org/10.1016/S0278-
(02)00222-4
Divya, M., Dinesh Kumar, S., Krishnaveni, N. &
Santhanam, P. 2018. A study of carbon sequestration
by phytoplankton. Basic and Applied Phytoplankton
Biology, 277–284. DOI: https://doi.org/10.1007/978-
-10-7938-2_15
Friedland, K. D., Stock, C., Drinkwater, K. F., Link, J. S.,
Leaf, R. T., Shank, B. V., Rose, J. M., Pilskaln, C. H.
& Fogarty, M. J. 2012. Pathways between Primary
Production and Fisheries Yields of Large Marine
Ecosystems. PLOS ONE, 7(1), e28945. DOI: https://doi.
org/10.1371/JOURNAL.PONE.0028945
Giardino, C., Breschiani, M., Stroppiana, D., Oggioni, A. &
Morabito, G. 2014. Optical remote sensing of lakes: an
Chlorophyll-a retrieval of sensors in Monterey Bay
Ocean and Coastal Research 2025, v73:e25024 13
Styles et al.
overview on Lake Maggiore. Journal of Limnology, 73(1),
–214. DOI: https://doi.org/10.4081/jlimnol.2014.817
Gitelson, A. A., Gurlin, D., Moses, W. J. & Barrow, T.
A bio-optical algorithm for the remote estimation
of the chlorophyll-a concentration in Case 2 waters.
Environmental Research Letters, 4(4), 045003.
DOI: https://doi.org/10.1088/1748-9326/4/4/045003
Goffredi, S. K., Paull, C. K., Fulton-Bennett, K., Hurtado,
L. A. & Vrijenhoek, R. C. 2004. Unusual benthic fauna
associated with a whale fall in Monterey Canyon,
California. Deep Sea Research Part I: Oceanographic
Research Papers, 51(10), 1295–1306. DOI: https://doi.
org/10.1016/J.DSR.2004.05.009
Ha, N. T. T., Thao, N. T. P., Koike, K. & Nhuan, M. T.
Selecting the Best Band Ratio to Estimate
Chlorophyll-a Concentration in a Tropical Freshwater
Lake Using Sentinel 2A Images from a Case Study of
Lake Ba Be (Northern Vietnam). ISPRS International
Journal of Geo-Information, 6(9), 290. DOI: https://doi.
org/10.3390/IJGI6090290
Herman, G. 1999. Optical Teledetection of Chlorophyll
a in Turbid Inland Waters. Environmental Science
and Technology, 33(7), 1127–1132. DOI: https://doi.
org/10.1021/es9809657
Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. &
Strickland, J. D. H. 1965. Fluorometric Determination
of Chlorophyll. ICES Journal of Marine Science, 30(1),
–15. DOI: https://doi.org/10.1093/ICESJMS/30.1.3
Hu, C., Lee, Z. & Franz, B. 2012. Chlorophyll a algorithms
for oligotrophic oceans: A novel approach based
on three-band reflectance difference. Journal of
Geophysical Research: Oceans, 117(C1). DOI: https://
doi.org/10.1029/2011JC007395
Ivanda, A., Šerić, L., Bugarić, M., & Braović, M. (2021).
Mapping Chlorophyll-a Concentrations in the Kaštela
Bay and Brač Channel Using Ridge Regression and
Sentinel-2 Satellite Images. Electronics 2021, 10(23),
https://doi.org/10.3390/ELECTRONICS10233004
Jackson, T. 2020. Product user guide for v5.0 dataset. D4.2.
ESA. Available from: https://docs.pml.space/share/s/
okB2fOuPT7Cj2r4C5sppDg. Access date: May 5 2025
Jiang, G., Loiselle, S. A., Yang, D., Ma, R., Su, W. & Gao, C.
Remote estimation of chlorophyll a concentrations
over a wide range of optical conditions based on
water classification from VIIRS observations. Remote
Sensing of Environment, 241, 111735. DOI: https://doi.
org/10.1016/J.RSE.2020.111735
Joint, I. & Groom, S. B. 2000. Estimation of phytoplankton
production from space: current status and future
potential of satellite remote sensing. Journal
of Experimental Marine Biology and Ecology,
(1–2), 233–255. DOI: https://doi.org/10.1016/S0022-
(00)00199-4
Kahru, M., Kudela, R. M., Anderson, C. R. & Mitchell, B.
G. 2015. Optimized Merger of Ocean Chlorophyll
Algorithms of MODIS-Aqua and VIIRS. IEEE Geoscience
and Remote Sensing Letters, 12(11), 2282–2285.
DOI: https://doi.org/10.1109/LGRS.2015.2470250
Lin, J., Cao, W., Wang, G., Zhou, W., Sun, Z. & Zhao, W.
Inversion of bio-optical properties in the coastal
upwelling waters of the northern South China Sea.
Continental Shelf Research, 85, 73–84. DOI: https://doi.
org/10.1016/J.CSR.2014.06.001
Mansergh, S. & Zehr, J. P. 2014. Vibrio diversity and
dynamics in the Monterey Bay upwelling region.
Frontiers in Microbiology, 5, 48. DOI: https://doi.
org/10.3389/FMICB.2014.00048
Manzer, C. R., Connolly, T. P., McPhee-Shaw, E. & Smith,
G. J. 2019. Physical factors influencing phytoplankton
abundance in southern Monterey Bay. Continental Shelf
Research, 180, 1–13. DOI: https://doi.org/10.1016/J.
CSR.2019.04.007
Markelin, L., Simis, S. G. H., Hunter, P. D., Spyrakos, E.,
Tyler, A. N., Clewley, D. & Groom, S. 2016. Atmospheric
Correction Performance of Hyperspectral Airborne
Imagery over a Small Eutrophic Lake under Changing
Cloud Cover. Remote Sensing, 9(1), 2. DOI: https://doi.
org/10.3390/RS9010002
Morel, A., Gentili, B., Claustre, H., Babin, M., Bricaud, A.,
Ras, J. & Tièche, F. 2007. Optical properties of the “clearest”
natural waters. Limnology and Oceanography, 52(1),
–229. DOI: https://doi.org/10.4319/LO.2007.52.1.0217
Morel, A. & Maritorena, S. 2001. Bio-optical properties of
oceanic waters: A reappraisal. Journal of Geophysical
Research: Oceans, 106(C4), 7163–7180. DOI: https://
doi.org/10.1029/2000JC000319
Morel, A. & Prieur, L. 1977. Analysis of variations in ocean
color1. Limnology and Oceanography, 22(4), 709–722.
DOI: https://doi.org/10.4319/LO.1977.22.4.0709
Moutzouris-Sidiris, I. & Topouzelis, K. 2021. Assessment
of Chlorophyll-a concentration from Sentinel-3 satellite
images at the Mediterranean Sea using CMEMS open
source in situ data. Open Geosciences, 13(1), 85–97.
DOI: https://doi.org/10.1515/GEO-2020-0204
Nima, C., Frette, Ø., Hamre, B., Erga, S. R., Chen,
Y. C., Zhao, L., Sørensen, K., Norli, M., Stamnes, K.
& Stamnes, J. J. 2016. Absorption properties of highlatitude Norwegian coastal water: The impact of CDOM
and particulate matter. Estuarine, Coastal and Shelf
Science, 178, 158–167. DOI: https://doi.org/10.1016/J.
ECSS.2016.05.012
Nuris, R., Gaol, J. & Prayogo, T. 2015. Chlorophyll-a
Concentrations Estimation from Aqua Modis and
VIIRS-NPP Satellite Sensors in South Java Sea
Waters - Repositori LAPAN. International Journal of
Remote Sensing and Earth Sciences, 12(1), 63–70.
Available from: http://repositori.lapan.go.id/1224/.
Access date: May 5 2025.
O’Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A.,
Carder, K. L., Garver, S. A., Kahru, M. & McClain, C.
Ocean color chlorophyll algorithms for SeaWiFS.
Journal of Geophysical Research: Oceans, 103(C11),
–24953. DOI: https://doi.org/10.1029/98JC02160
Orlandi, M., Silvio Marzano, F., & Cimini, D. (2018).
Remote sensing of water quality indexes from
Sentinel-2 imagery: development and validation
around Italian river estuaries. 20th EGU General
Assembly, 20, 19808. https://ui.adsabs.harvard.edu/
abs/2018EGUGA..2019808O/abstract
Parsons, T. R., Maita, Y., & Lalli, C. M. (1984).
Determination of Chlorophylls and Total Carotenoids:
Spectrophotometric Method. A Manual of Chemical &
Chlorophyll-a retrieval of sensors in Monterey Bay
Ocean and Coastal Research 2025, v73:e25024 14
Styles et al.
Biological Methods for Seawater Analysis, 101–104.
https://doi.org/10.1016/B978-0-08-030287-4.50032-3
Pennington, T. J. & Chavez, F. P. 2000. Seasonal fluctuations
of temperature, salinity, nitrate, chlorophyll and primary
production at station H3/M1 over 1989–1996 in
Monterey Bay, California. Deep Sea Research Part II:
Topical Studies in Oceanography, 47(5–6), 947–973.
DOI: https://doi.org/10.1016/S0967-0645(99)00132-0
Pirasteh, S., Mollaee, S., Fatholahi, S. N. & Li, J.
Estimation of Phytoplankton Chlorophyll-a
Concentrations in the Western Basin of Lake Erie Using
Sentinel-2 and Sentinel-3 Data. Canadian Journal of
Remote Sensing, 46(5), 585–602. DOI: https://doi.org/
1080/07038992.2020.1823825
Polimene, L., Sailley, S., Clark, D., Mitra, A. & Allen,
J. I. 2017. Biological or microbial carbon pump?
The role of phytoplankton stoichiometry in ocean carbon
sequestration. Journal of Plankton Research, 39(2), 180–
DOI: https://doi.org/10.1093/PLANKT/FBW091
Reji, L., Tolar, B. B., Chavez, F. P. & Francis, C. A. 2020.
Depth-Differentiation and Seasonality of Planktonic
Microbial Assemblages in the Monterey Bay
Upwelling System. Frontiers in Microbiology, 11, 1075.
DOI: https://doi.org/10.3389/FMICB.2020.01075
Rosenfeld, L. K., Schwing, F. B., Garfield, N. & Tracy,
D. E. 1994. Bifurcated flow from an upwelling center:
a cold water source for Monterey Bay. Continental
Shelf Research, 14(9), 931–964. DOI: https://doi.
org/10.1016/0278-4343(94)90058-2
Ryan, J. P., Davis, C. O., Tufillaro, N. B., Kudela, R. M.
& Gao, B.-C. 2014. Application of the Hyperspectral
Imager for the Coastal Ocean to Phytoplankton
Ecology Studies in Monterey Bay, CA, USA.
Remote Sensing, 6(2), 1007–1025. DOI: https://doi.
org/10.3390/RS6021007
Ryan, J. P., Fischer, A. M., Kudela, R. M., Gower, J. F. R.,
King, S. A., Marin, R. & Chavez, F. P. 2009. Influences
of upwelling and downwelling winds on red tide bloom
dynamics in Monterey Bay, California. Continental
Shelf Research, 29(5–6), 785–795. DOI: https://doi.
org/10.1016/J.CSR.2008.11.006
Sathyendranath, S., Brewin, B., Mueller, D., Doerffer, R.,
Krasemann, H., Melin, F., Brockmann, C., Fomferra, N.,
Peters, M., Grant, M., Steinmetz, F., Deschamps, P.-Y.,
Swinton, J., Smyth, T., Werdell, J., Franz, B., Maritorena, S.,
Devred, E., Lee, Z., Hu, C. & Regner, P. 2012. Ocean Colour
Climate Change Initiative - Approach and initial results. In:
IEEE International Geoscience and Remote Sensing
Symposium, 1, 2024–2027. Munich, Germany: IEEE.
DOI: https://doi.org/10.1109/IGARSS.2012.6350979
Sathyendranath, S.; Jackson, T.; Brockmann, C.;
Brotas, V.; Calton, B.; Chuprin, A.; Clements, O.;
Cipollini, P.; Danne, O.; Dingle, J.; Donlon, C.; Grant, M.;
Groom, S.; Krasemann, H.; Lavender, S.; Mazeran,
C.; Mélin, F.; Müller, D.; Steinmetz, F.; Vale, T. 2023.
Dataset Record: ESA Ocean Colour Climate Change
Initiative (Ocean_Colour_cci): Monthly climatology of
global ocean colour data products at 4km resolution,
Version 6.0. NERC EDS Centre for Environmental
Analysis. DOI: https://doi.org/10.5285/5011d22aae5a
b0cbc7d05c56c4f0
Schiller, H. & Doerffer, R. 1999. Neural network for
emulation of an inverse model operational derivation of
Case II water properties from MERIS data. International
Journal of Remote Sensing, 20(9), 1735–1746.
DOI: https://doi.org/10.1080/014311699212443
Schueler, C. F., Clement, J. E., Ardanuy, P. E., Welsch,
C., DeLuccia, F. & Swenson, H. 2002. NPOESS VIIRS
sensor design overview. International Symposium
on Optical Science and Technology, 4483, 11–23.
DOI: https://doi.org/10.1117/12.453451
Shaik, I., Mohammad, S., Nagamani, P. V., Begum, S. K.,
Kayet, N., & Varaprasad, D. (2021). Assessment of
chlorophyll-a retrieval algorithms over Kakinada and
Yanam turbid coastal waters along east coast of
India using Sentinel-3A OLCI and Sentinel-2A MSI
sensors. Remote Sensing Applications: Society and
Environment, 24, 100644. https://doi.org/10.1016/J.
RSASE.2021.100644
Soomets, T., Uudeberg, K., Jakovels, D., Brauns, A., Zagars,
M. & Kutser, T. 2020. Validation and Comparison of
Water Quality Products in Baltic Lakes Using Sentinel-2
MSI and Sentinel-3 OLCI Data. Sensors, 20(3), 742.
DOI: https://doi.org/10.3390/S20030742
Sòria-Perpinyà, X., Vicente, E., Urrego, P., PereiraSandoval, M., Tenjo, C., Ruíz-Verdú, A., Delegido, J.,
Soria, J. M., Peña, R. & Moreno, J. 2021. Validation of
Water Quality Monitoring Algorithms for Sentinel-2 and
Sentinel-3 in Mediterranean Inland Waters with In Situ
Reflectance Data. Water, 13(5), 686. DOI: https://doi.
org/10.3390/W13050686
Sorrell, B. K., Hawes, I., Safi, K., Moses, W. J., Saprygin, V.,
Gitelson, A. A., Gurlin, D. & Barrow, T. 2009. A bio-optical
algorithm for the remote estimation of the chlorophyll-a
concentration in Case 2 waters. Environ. Res. Lett, 4,
DOI: https://doi.org/10.1088/1748-9326/4/4/045003
Staehr, S. U., Holbach, A. M., Markager, S., & Staehr,
P. A. U. (2023). Exploratory study of the Sentinel-3 level
product for monitoring chlorophyll-a and assessing
ecological status in Danish seas. Science of The Total
Environment, 897, 165310. https://doi.org/10.1016/J.
SCITOTENV.2023.165310
Syariz, M. A., Lin, C. H. & Blanco, A. C. 2019. Chlorophyll-a
Concentration Retrieval Using Convolutional Neural
Networks in Laguna Lake, Philippines. International
Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences - ISPRS Archives,
(4/W19), 401–405. DOI: https://doi.org/10.5194/
ISPRS-ARCHIVES-XLII-4-W19-401-2019
Syariz, M. A., Lin, C. H., Van Nguyen, M., Jaelani, L. M. &
Blanco, A. C. 2020. WaterNet: A Convolutional Neural
Network for Chlorophyll-a Concentration Retrieval.
Remote Sensing, 12(12), 1966. DOI: https://doi.
org/10.3390/RS12121966
Theenathayalan, V., Sathyendranath, S., Kulk, G., Menon, N.,
George, G., Abdulaziz, A., Selmes, N., Brewin, R. J. W.,
Rajendran, A., Xavier, S. & Platt, T. 2022. Regional
Satellite Algorithms to Estimate Chlorophyll-a and
Total Suspended Matter Concentrations in Vembanad
Lake. Remote Sensing, 14(24), 6404. DOI: https://doi.
org/10.3390/RS14246404
Thomson, R. E. & Krassovski, M. V. 2010. Poleward reach
of the California Undercurrent extension. Journal
Chlorophyll-a retrieval of sensors in Monterey Bay
Ocean and Coastal Research 2025, v73:e25024 15
Styles et al.
of Geophysical Research: Oceans, 115(C9), 9027.
DOI: https://doi.org/10.1029/2010JC006280
Tilstone, G. H., Pardo, S., Dall’Olmo, G., Brewin,
R. J. W., Nencioli, F., Dessailly, D., Kwiatkowska, E.,
Casal, T. & Donlon, C. 2021. Performance of Ocean
Colour Chlorophyll a algorithms for Sentinel-3 OLCI,
MODIS-Aqua and Suomi-VIIRS in open-ocean waters
of the Atlantic. Remote Sensing of Environment,
, 112444. DOI: https://doi.org/10.1016/J.
RSE.2021.112444
Torbick, N., Hu, F., Zhang, J., Qi, J., Zhang, H. & Becker,
B. 2008. Mapping Chlorophyll-a Concentrations in West
Lake, China using Landsat 7 ETM+. Journal of Great
Lakes Research, 34(3), 559–565. DOI: https://doi.
org/10.3394/0380-1330(2008)34[559:mcciwl]2.0.co;2
Valente, A., Sathyendranath, S., Brotas, V.,
Groom, S., Grant, M., Jackson, T., Chuprin, A.,
Taberner, M., Airs, R., Antoine, D., Arnone, R., Balch,
W. M., Barker, K., Barlow, R., Bélanger, S., Berthon,
J. F., Beşiktepe, Ş., Borsheim, Y., Bracher, A.,
Brando, V., Brewin, R. J. W., Canuti, E., Chavez, F. P.,
Cianca, A., Claustre, H., Clementson, L., Crout, R.,
Ferreira, A., Freeman, S., Frouin, R., García-Soto, C.,
Gibb, S. W., Goericke, R., Gould, R., Guillocheau, N.,
Hooker, S. B., Hu, C., Kahru, M., Kampel, M., Klein, H.,
Kratzer, S., Kudela, R., Ledesma, J., Lohrenz, S., Loisel, H.,
Mannino, A., Martinez-Vicente, V., Matrai, P., Mckee, D.,
Mitchell, B. G., Moisan, T., Montes, E., Muller-Karger,
F., Neeley, A., Novak, M., O’dowd, L., Ondrusek, M.,
Platt, T., Poulton, A. J., Repecaud, M., Röttgers, R.,
Schroeder, T., Smyth, T., Smythe-Wright, D., Sosik,
H. M., Thomas, C., Thomas, R., Tilstone, G.,
Tracana, A., Twardowski, M., Vellucci, V., Voss, K.,
Werdell, J., Wernand, M., Wojtasiewicz, B., Wright, S.
& Zibordi, G. 2022. A compilation of global bio-optical in
situ data for ocean colour satellite applications – version
three. Earth System Science Data, 14(12), 5737–5770.
DOI: https://doi.org/10.5194/ESSD-14-5737-2022
Vanhellemont, Q. & Ruddick, K. 2021. Atmospheric
correction of Sentinel-3/OLCI data for mapping of
suspended particulate matter and chlorophyll-a
concentration in Belgian turbid coastal waters. Remote
Sensing of Environment, 256, 112284. DOI: https://doi.
org/10.1016/J.RSE.2021.112284
Wakamatsu, L., Britten, G. L., Styles, E. J. & Fischer,
A. M. 2022. Chlorophyll-a and Sea Surface
Temperature Changes in Relation to Paralytic Shellfish
Toxin Production off the East Coast of Tasmania,
Australia. Remote Sensing, 14(3), 665. DOI: https://doi.
org/10.3390/RS14030665
Werdell, P. J., Franz, B. A. & Bailey, S. W. 2010. Evaluation
of shortwave infrared atmospheric correction for
ocean color remote sensing of Chesapeake Bay.
Remote Sensing of Environment, 114(10), 2238–2247.
DOI: https://doi.org/10.1016/J.RSE.2010.04.027
Xiong, X. & Butler, J. J. 2020. MODIS and VIIRS Calibration
History and Future Outlook. Remote Sensing, 12(16),
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Elliot Styles, Lael Wakamatsu, Andrew M. Fischer

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.
