Assessing chlorophyll-a retrieval of Sentinel-3 OLCI, VIIRS, MODIS and OC-CCI in Monterey Bay (California, USA)

Authors

  • Elliot Styles
  • Lael Wakamatsu
  • Andrew M. Fischer

DOI:

https://doi.org/10.1590/

Keywords:

Ocean colour, Remote sensing, Chlorophyll-a, Sentinel, MODIS Aqua, OC-CCI

Abstract

Advances in high-resolution satellite sensors and merged multi-sensor ocean colour products have improved
the detection of submesoscale features and enhanced the continuity of ocean surface measurements. This has
enabled more detailed observations of chlorophyll-a (chl-a) growth rates, biomass and biogeochemical fluxes.
Chl-a, a photosynthetic pigment in marine autotrophs, is used as a proxy for phytoplankton biomass and
primary productivity. The accurate estimation of surface chl-a via remote sensing is key to improving coastal
ocean process modelling. We compared chl-a products from sensors of multiple spatial resolutions, including
Sentinel-3 Ocean and Land Colour Imager (OLCI), the Moderate Resolution Imaging Spectroradiometer (Aqua)
(MODIS Aqua), the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi NPP and the Ocean Colour
Climate Change Initiative (OC-CCI) V6 product to two in situ datasets (M1 and C1) in Monterey Bay, California,
USA. Sentinel-3 consistently performed well under the Inverse Modelling Technique - Neural Network chl-a
algorithm, performing slightly better at station M1 (R2
M1 = 0.85, R2
C1 = 0.80). The Ocean Colour for MERIS
algorithm performed better at offshore station M1 (R2
M1 = 0.87) and yielded no matchups at C1. MODIS Aqua
and VIIRS performed poorly (R2
M1,MODIS = 0.32, R2
M1,VIIRS = 0.02, R2
C1,MODIS = 0.08, R2
C1,VIIRS = 0.25), likely inhibited
by calibration to global as opposed to regionally adapted datasets. OC-CCI, though blended for greater
continuity, produced fewer matchups at a higher accuracy (R2
M1, OC-CCI = 0.66, R2
C1, OC-CCI = 0.63) than MODIS
Aqua or VIIRS alone, but still less so than Sentinel-3 OLCI. All sensors either over- or under-estimated chl-a
at all concentrations, apart from OC-CCI, likely due to the complex coastal optical properties of the area. Our
results highlight the need for regional algorithm development and show the potential effectiveness of Sentinel-3
and OC-CCI products for future submesoscale process studies.

Downloads

Download data is not yet available.

References

Abbas, M. M., Melesse, A. M., Scinto, L. J. & Rehage,

J. S. 2019. Satellite Estimation of Chlorophyll-a Using

Moderate Resolution Imaging Spectroradiometer

(MODIS) Sensor in Shallow Coastal Water Bodies:

Validation and Improvement. Water, 11(8), 1621.

DOI: https://doi.org/10.3390/W11081621

Al-Naimi, N., Raitsos, D. E., Ben-Hamadou, R. & Soliman, Y.

Evaluation of Satellite Retrievals of Chlorophyll-a

in the Arabian Gulf. Remote Sensing, 9(3), 301.

DOI: https://doi.org/10.3390/RS9030301

Ali, K. A., Ortiz, J., Bonini, N., Shuman, M. & Sydow, C.

Application of Aqua MODIS sensor data for

estimating chlorophyll a in the turbid Case 2 waters

of Lake Erie using bio-optical models. GIScience and

Remote Sensing, 53(4), 483–505. DOI: https://doi.org/1

1080/15481603.2016.1177248

Angal, A., Xiong, X., Twedt, K., Chang, T., Geng, X.,

Aldoretta, E. & Díaz, C. P. 2023. Status of the Terra and

Aqua Modis Collection 7 L1B. IGARSS 2023 - 2023

IEEE International Geoscience and Remote Sensing

Symposium, 4466–4469. DOI: https://doi.org/10.1109/

IGARSS52108.2023.10283303

Ansper, A. & Alikas, K. 2018. Retrieval of Chlorophyll a

from Sentinel-2 MSI Data for the European Union Water

Framework Directive Reporting Purposes. Remote

Sensing, 11(1), 64. DOI: https://doi.org/10.3390/

RS11010064

Azmi, S., Agarwadkar, Y., Bhattacharya, M., Apte, M. &

Inamdar, A. 2015. Indicator Based Ecological Health

Analysis Using Chlorophyll and Sea Surface Temperature

Along with Fish Catch Data off Mumbai Coast. Turkish

Journal of Fisheries and Aquatic Sciences, 15(4), 923–

DOI: https://doi.org/10.4194/1303-2712-V15_4_16

Barnes, W. L. & Salomonson, V. V. 1992. MODIS:

a global imaging spectroradiometer for the Earth

Observing System. Applications in Optical Science

and Engineering, 10269, 280–302. DOI: https://doi.

org/10.1117/12.161578

Basu, S. & Mackey, K. R. M. 2018. Phytoplankton as

Key Mediators of the Biological Carbon Pump: Their

Responses to a Changing Climate. Sustainability, 10(3),

DOI: https://doi.org/10.3390/SU10030869

Binh, N. A., Hoa, P. V., Thao, G. T. P., Duan, H. D., & Thu,

P. M. (2022). Evaluation of Chlorophyll-a estimation

using Sentinel 3 based on various algorithms in

southern coastal Vietnam. International Journal of

Applied Earth Observation and Geoinformation, 112,

https://doi.org/10.1016/J.JAG.2022.102951

Breaker, L. C. 2005. What’s happening in Monterey Bay

on seasonal to interdecadal time scales. Continental

Shelf Research, 25(10), 1159–1193. DOI: https://doi.

org/10.1016/J.CSR.2005.01.003

Bricaud, A., Morel, A., Babin, M., Allali, K. & Claustre, H.

Variations of light absorption by suspended

particles with chlorophyll a concentration in oceanic

(Case 1) waters: Analysis and implications for

bio-optical models. Journal of Geophysical Research:

Oceans, 103(C13), 31033–31044. DOI: https://doi.

org/10.1029/98JC02712

Brockmann, C., Doerffer, R., Peters, M., Kerstin, S., Embacher,

S. & Ruescas, A. 2016. Evolution of the C2RCC Neural

Network for Sentinel 2 and 3 for the Retrieval of Ocean

Colour Products in Normal and Extreme Optically Complex

Waters. ESASP, 740, 54. Available from: https://ui.adsabs.

harvard.edu/abs/2016ESASP.740E..54B/abstract. Access

date: May 5 2025.

Campbell, J. W. 1995. The lognormal distribution as a

model for bio-optical variability in the sea. Journal

of Geophysical Research: Oceans, 100(C7),

–13254. DOI: https://doi.org/10.1029/95JC00458

Carswell, T., Costa, M., Young, E., Komick, N., Gower,

J. & Sweeting, R. 2017. Evaluation of MODIS-Aqua

Atmospheric Correction and Chlorophyll Products

of Western North American Coastal Waters Based

on 13 Years of Data. Remote Sensing, 9(10), 1063.

DOI: https://doi.org/10.3390/RS9101063

Cazzaniga, I., Bresciani, M., Colombo, R., Bella, V.

Della, Padula, R. & Giardino, C. 2019. A comparison

of Sentinel-3-OLCI and Sentinel-2-MSI-derived

Chlorophyll-a maps for two large Italian lakes. Remote

Sensing Letters, 10(10), 978–987. DOI: https://doi.org/1

1080/2150704X.2019.1634298

Chavez, F. P. 1996. Forcing and biological impact of onset

of the 1992 El Nino in central California, 23, 265–268.

DOI: https://doi.org/10.1029/96GL00017

Chen, J., Zhang, M., Cui, T. & Wen, Z. 2013. A review of

some important technical problems in respect of satellite

remote sensing of chlorophyll - A concentration in coastal

waters. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 6(5), 2275–2289.

DOI: https://doi.org/10.1109/JSTARS.2013.2242845

Chen, J., Zhu, W., Tian, Y. Q., Yu, Q., Zheng, Y. & Huang,

L. 2017. Remote estimation of colored dissolved

organic matter and chlorophyll-a in Lake Huron using

Sentinel-2 measurements. Journal of Applied Remote

Sensing, 11(3), 036007. DOI: https://doi.org/10.1117/1.

JRS.11.036007

Dall’Olmo, G. & Gitelson, A. A. 2005. Effect of bio-optical

parameter variability on the remote estimation of

chlorophyll-a concentration in turbid productive waters:

experimental results. Applied Optics, 44(3), 412–422.

DOI: https://doi.org/10.1364/AO.44.000412

Darecki, M., Weeks, A., Sagan, S., Kowalczuk, P. &

Kaczmarek, S. 2003. Optical characteristics of two

contrasting Case 2 waters and their influence on

remote sensing algorithms. Continental Shelf Research,

(3–4), 237–250. DOI: https://doi.org/10.1016/S0278-

(02)00222-4

Divya, M., Dinesh Kumar, S., Krishnaveni, N. &

Santhanam, P. 2018. A study of carbon sequestration

by phytoplankton. Basic and Applied Phytoplankton

Biology, 277–284. DOI: https://doi.org/10.1007/978-

-10-7938-2_15

Friedland, K. D., Stock, C., Drinkwater, K. F., Link, J. S.,

Leaf, R. T., Shank, B. V., Rose, J. M., Pilskaln, C. H.

& Fogarty, M. J. 2012. Pathways between Primary

Production and Fisheries Yields of Large Marine

Ecosystems. PLOS ONE, 7(1), e28945. DOI: https://doi.

org/10.1371/JOURNAL.PONE.0028945

Giardino, C., Breschiani, M., Stroppiana, D., Oggioni, A. &

Morabito, G. 2014. Optical remote sensing of lakes: an

Chlorophyll-a retrieval of sensors in Monterey Bay

Ocean and Coastal Research 2025, v73:e25024 13

Styles et al.

overview on Lake Maggiore. Journal of Limnology, 73(1),

–214. DOI: https://doi.org/10.4081/jlimnol.2014.817

Gitelson, A. A., Gurlin, D., Moses, W. J. & Barrow, T.

A bio-optical algorithm for the remote estimation

of the chlorophyll-a concentration in Case 2 waters.

Environmental Research Letters, 4(4), 045003.

DOI: https://doi.org/10.1088/1748-9326/4/4/045003

Goffredi, S. K., Paull, C. K., Fulton-Bennett, K., Hurtado,

L. A. & Vrijenhoek, R. C. 2004. Unusual benthic fauna

associated with a whale fall in Monterey Canyon,

California. Deep Sea Research Part I: Oceanographic

Research Papers, 51(10), 1295–1306. DOI: https://doi.

org/10.1016/J.DSR.2004.05.009

Ha, N. T. T., Thao, N. T. P., Koike, K. & Nhuan, M. T.

Selecting the Best Band Ratio to Estimate

Chlorophyll-a Concentration in a Tropical Freshwater

Lake Using Sentinel 2A Images from a Case Study of

Lake Ba Be (Northern Vietnam). ISPRS International

Journal of Geo-Information, 6(9), 290. DOI: https://doi.

org/10.3390/IJGI6090290

Herman, G. 1999. Optical Teledetection of Chlorophyll

a in Turbid Inland Waters. Environmental Science

and Technology, 33(7), 1127–1132. DOI: https://doi.

org/10.1021/es9809657

Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. &

Strickland, J. D. H. 1965. Fluorometric Determination

of Chlorophyll. ICES Journal of Marine Science, 30(1),

–15. DOI: https://doi.org/10.1093/ICESJMS/30.1.3

Hu, C., Lee, Z. & Franz, B. 2012. Chlorophyll a algorithms

for oligotrophic oceans: A novel approach based

on three-band reflectance difference. Journal of

Geophysical Research: Oceans, 117(C1). DOI: https://

doi.org/10.1029/2011JC007395

Ivanda, A., Šerić, L., Bugarić, M., & Braović, M. (2021).

Mapping Chlorophyll-a Concentrations in the Kaštela

Bay and Brač Channel Using Ridge Regression and

Sentinel-2 Satellite Images. Electronics 2021, 10(23),

https://doi.org/10.3390/ELECTRONICS10233004

Jackson, T. 2020. Product user guide for v5.0 dataset. D4.2.

ESA. Available from: https://docs.pml.space/share/s/

okB2fOuPT7Cj2r4C5sppDg. Access date: May 5 2025

Jiang, G., Loiselle, S. A., Yang, D., Ma, R., Su, W. & Gao, C.

Remote estimation of chlorophyll a concentrations

over a wide range of optical conditions based on

water classification from VIIRS observations. Remote

Sensing of Environment, 241, 111735. DOI: https://doi.

org/10.1016/J.RSE.2020.111735

Joint, I. & Groom, S. B. 2000. Estimation of phytoplankton

production from space: current status and future

potential of satellite remote sensing. Journal

of Experimental Marine Biology and Ecology,

(1–2), 233–255. DOI: https://doi.org/10.1016/S0022-

(00)00199-4

Kahru, M., Kudela, R. M., Anderson, C. R. & Mitchell, B.

G. 2015. Optimized Merger of Ocean Chlorophyll

Algorithms of MODIS-Aqua and VIIRS. IEEE Geoscience

and Remote Sensing Letters, 12(11), 2282–2285.

DOI: https://doi.org/10.1109/LGRS.2015.2470250

Lin, J., Cao, W., Wang, G., Zhou, W., Sun, Z. & Zhao, W.

Inversion of bio-optical properties in the coastal

upwelling waters of the northern South China Sea.

Continental Shelf Research, 85, 73–84. DOI: https://doi.

org/10.1016/J.CSR.2014.06.001

Mansergh, S. & Zehr, J. P. 2014. Vibrio diversity and

dynamics in the Monterey Bay upwelling region.

Frontiers in Microbiology, 5, 48. DOI: https://doi.

org/10.3389/FMICB.2014.00048

Manzer, C. R., Connolly, T. P., McPhee-Shaw, E. & Smith,

G. J. 2019. Physical factors influencing phytoplankton

abundance in southern Monterey Bay. Continental Shelf

Research, 180, 1–13. DOI: https://doi.org/10.1016/J.

CSR.2019.04.007

Markelin, L., Simis, S. G. H., Hunter, P. D., Spyrakos, E.,

Tyler, A. N., Clewley, D. & Groom, S. 2016. Atmospheric

Correction Performance of Hyperspectral Airborne

Imagery over a Small Eutrophic Lake under Changing

Cloud Cover. Remote Sensing, 9(1), 2. DOI: https://doi.

org/10.3390/RS9010002

Morel, A., Gentili, B., Claustre, H., Babin, M., Bricaud, A.,

Ras, J. & Tièche, F. 2007. Optical properties of the “clearest”

natural waters. Limnology and Oceanography, 52(1),

–229. DOI: https://doi.org/10.4319/LO.2007.52.1.0217

Morel, A. & Maritorena, S. 2001. Bio-optical properties of

oceanic waters: A reappraisal. Journal of Geophysical

Research: Oceans, 106(C4), 7163–7180. DOI: https://

doi.org/10.1029/2000JC000319

Morel, A. & Prieur, L. 1977. Analysis of variations in ocean

color1. Limnology and Oceanography, 22(4), 709–722.

DOI: https://doi.org/10.4319/LO.1977.22.4.0709

Moutzouris-Sidiris, I. & Topouzelis, K. 2021. Assessment

of Chlorophyll-a concentration from Sentinel-3 satellite

images at the Mediterranean Sea using CMEMS open

source in situ data. Open Geosciences, 13(1), 85–97.

DOI: https://doi.org/10.1515/GEO-2020-0204

Nima, C., Frette, Ø., Hamre, B., Erga, S. R., Chen,

Y. C., Zhao, L., Sørensen, K., Norli, M., Stamnes, K.

& Stamnes, J. J. 2016. Absorption properties of highlatitude Norwegian coastal water: The impact of CDOM

and particulate matter. Estuarine, Coastal and Shelf

Science, 178, 158–167. DOI: https://doi.org/10.1016/J.

ECSS.2016.05.012

Nuris, R., Gaol, J. & Prayogo, T. 2015. Chlorophyll-a

Concentrations Estimation from Aqua Modis and

VIIRS-NPP Satellite Sensors in South Java Sea

Waters - Repositori LAPAN. International Journal of

Remote Sensing and Earth Sciences, 12(1), 63–70.

Available from: http://repositori.lapan.go.id/1224/.

Access date: May 5 2025.

O’Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A.,

Carder, K. L., Garver, S. A., Kahru, M. & McClain, C.

Ocean color chlorophyll algorithms for SeaWiFS.

Journal of Geophysical Research: Oceans, 103(C11),

–24953. DOI: https://doi.org/10.1029/98JC02160

Orlandi, M., Silvio Marzano, F., & Cimini, D. (2018).

Remote sensing of water quality indexes from

Sentinel-2 imagery: development and validation

around Italian river estuaries. 20th EGU General

Assembly, 20, 19808. https://ui.adsabs.harvard.edu/

abs/2018EGUGA..2019808O/abstract

Parsons, T. R., Maita, Y., & Lalli, C. M. (1984).

Determination of Chlorophylls and Total Carotenoids:

Spectrophotometric Method. A Manual of Chemical &

Chlorophyll-a retrieval of sensors in Monterey Bay

Ocean and Coastal Research 2025, v73:e25024 14

Styles et al.

Biological Methods for Seawater Analysis, 101–104.

https://doi.org/10.1016/B978-0-08-030287-4.50032-3

Pennington, T. J. & Chavez, F. P. 2000. Seasonal fluctuations

of temperature, salinity, nitrate, chlorophyll and primary

production at station H3/M1 over 1989–1996 in

Monterey Bay, California. Deep Sea Research Part II:

Topical Studies in Oceanography, 47(5–6), 947–973.

DOI: https://doi.org/10.1016/S0967-0645(99)00132-0

Pirasteh, S., Mollaee, S., Fatholahi, S. N. & Li, J.

Estimation of Phytoplankton Chlorophyll-a

Concentrations in the Western Basin of Lake Erie Using

Sentinel-2 and Sentinel-3 Data. Canadian Journal of

Remote Sensing, 46(5), 585–602. DOI: https://doi.org/

1080/07038992.2020.1823825

Polimene, L., Sailley, S., Clark, D., Mitra, A. & Allen,

J. I. 2017. Biological or microbial carbon pump?

The role of phytoplankton stoichiometry in ocean carbon

sequestration. Journal of Plankton Research, 39(2), 180–

DOI: https://doi.org/10.1093/PLANKT/FBW091

Reji, L., Tolar, B. B., Chavez, F. P. & Francis, C. A. 2020.

Depth-Differentiation and Seasonality of Planktonic

Microbial Assemblages in the Monterey Bay

Upwelling System. Frontiers in Microbiology, 11, 1075.

DOI: https://doi.org/10.3389/FMICB.2020.01075

Rosenfeld, L. K., Schwing, F. B., Garfield, N. & Tracy,

D. E. 1994. Bifurcated flow from an upwelling center:

a cold water source for Monterey Bay. Continental

Shelf Research, 14(9), 931–964. DOI: https://doi.

org/10.1016/0278-4343(94)90058-2

Ryan, J. P., Davis, C. O., Tufillaro, N. B., Kudela, R. M.

& Gao, B.-C. 2014. Application of the Hyperspectral

Imager for the Coastal Ocean to Phytoplankton

Ecology Studies in Monterey Bay, CA, USA.

Remote Sensing, 6(2), 1007–1025. DOI: https://doi.

org/10.3390/RS6021007

Ryan, J. P., Fischer, A. M., Kudela, R. M., Gower, J. F. R.,

King, S. A., Marin, R. & Chavez, F. P. 2009. Influences

of upwelling and downwelling winds on red tide bloom

dynamics in Monterey Bay, California. Continental

Shelf Research, 29(5–6), 785–795. DOI: https://doi.

org/10.1016/J.CSR.2008.11.006

Sathyendranath, S., Brewin, B., Mueller, D., Doerffer, R.,

Krasemann, H., Melin, F., Brockmann, C., Fomferra, N.,

Peters, M., Grant, M., Steinmetz, F., Deschamps, P.-Y.,

Swinton, J., Smyth, T., Werdell, J., Franz, B., Maritorena, S.,

Devred, E., Lee, Z., Hu, C. & Regner, P. 2012. Ocean Colour

Climate Change Initiative - Approach and initial results. In:

IEEE International Geoscience and Remote Sensing

Symposium, 1, 2024–2027. Munich, Germany: IEEE.

DOI: https://doi.org/10.1109/IGARSS.2012.6350979

Sathyendranath, S.; Jackson, T.; Brockmann, C.;

Brotas, V.; Calton, B.; Chuprin, A.; Clements, O.;

Cipollini, P.; Danne, O.; Dingle, J.; Donlon, C.; Grant, M.;

Groom, S.; Krasemann, H.; Lavender, S.; Mazeran,

C.; Mélin, F.; Müller, D.; Steinmetz, F.; Vale, T. 2023.

Dataset Record: ESA Ocean Colour Climate Change

Initiative (Ocean_Colour_cci): Monthly climatology of

global ocean colour data products at 4km resolution,

Version 6.0. NERC EDS Centre for Environmental

Analysis. DOI: https://doi.org/10.5285/5011d22aae5a

b0cbc7d05c56c4f0

Schiller, H. & Doerffer, R. 1999. Neural network for

emulation of an inverse model operational derivation of

Case II water properties from MERIS data. International

Journal of Remote Sensing, 20(9), 1735–1746.

DOI: https://doi.org/10.1080/014311699212443

Schueler, C. F., Clement, J. E., Ardanuy, P. E., Welsch,

C., DeLuccia, F. & Swenson, H. 2002. NPOESS VIIRS

sensor design overview. International Symposium

on Optical Science and Technology, 4483, 11–23.

DOI: https://doi.org/10.1117/12.453451

Shaik, I., Mohammad, S., Nagamani, P. V., Begum, S. K.,

Kayet, N., & Varaprasad, D. (2021). Assessment of

chlorophyll-a retrieval algorithms over Kakinada and

Yanam turbid coastal waters along east coast of

India using Sentinel-3A OLCI and Sentinel-2A MSI

sensors. Remote Sensing Applications: Society and

Environment, 24, 100644. https://doi.org/10.1016/J.

RSASE.2021.100644

Soomets, T., Uudeberg, K., Jakovels, D., Brauns, A., Zagars,

M. & Kutser, T. 2020. Validation and Comparison of

Water Quality Products in Baltic Lakes Using Sentinel-2

MSI and Sentinel-3 OLCI Data. Sensors, 20(3), 742.

DOI: https://doi.org/10.3390/S20030742

Sòria-Perpinyà, X., Vicente, E., Urrego, P., PereiraSandoval, M., Tenjo, C., Ruíz-Verdú, A., Delegido, J.,

Soria, J. M., Peña, R. & Moreno, J. 2021. Validation of

Water Quality Monitoring Algorithms for Sentinel-2 and

Sentinel-3 in Mediterranean Inland Waters with In Situ

Reflectance Data. Water, 13(5), 686. DOI: https://doi.

org/10.3390/W13050686

Sorrell, B. K., Hawes, I., Safi, K., Moses, W. J., Saprygin, V.,

Gitelson, A. A., Gurlin, D. & Barrow, T. 2009. A bio-optical

algorithm for the remote estimation of the chlorophyll-a

concentration in Case 2 waters. Environ. Res. Lett, 4,

DOI: https://doi.org/10.1088/1748-9326/4/4/045003

Staehr, S. U., Holbach, A. M., Markager, S., & Staehr,

P. A. U. (2023). Exploratory study of the Sentinel-3 level

product for monitoring chlorophyll-a and assessing

ecological status in Danish seas. Science of The Total

Environment, 897, 165310. https://doi.org/10.1016/J.

SCITOTENV.2023.165310

Syariz, M. A., Lin, C. H. & Blanco, A. C. 2019. Chlorophyll-a

Concentration Retrieval Using Convolutional Neural

Networks in Laguna Lake, Philippines. International

Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences - ISPRS Archives,

(4/W19), 401–405. DOI: https://doi.org/10.5194/

ISPRS-ARCHIVES-XLII-4-W19-401-2019

Syariz, M. A., Lin, C. H., Van Nguyen, M., Jaelani, L. M. &

Blanco, A. C. 2020. WaterNet: A Convolutional Neural

Network for Chlorophyll-a Concentration Retrieval.

Remote Sensing, 12(12), 1966. DOI: https://doi.

org/10.3390/RS12121966

Theenathayalan, V., Sathyendranath, S., Kulk, G., Menon, N.,

George, G., Abdulaziz, A., Selmes, N., Brewin, R. J. W.,

Rajendran, A., Xavier, S. & Platt, T. 2022. Regional

Satellite Algorithms to Estimate Chlorophyll-a and

Total Suspended Matter Concentrations in Vembanad

Lake. Remote Sensing, 14(24), 6404. DOI: https://doi.

org/10.3390/RS14246404

Thomson, R. E. & Krassovski, M. V. 2010. Poleward reach

of the California Undercurrent extension. Journal

Chlorophyll-a retrieval of sensors in Monterey Bay

Ocean and Coastal Research 2025, v73:e25024 15

Styles et al.

of Geophysical Research: Oceans, 115(C9), 9027.

DOI: https://doi.org/10.1029/2010JC006280

Tilstone, G. H., Pardo, S., Dall’Olmo, G., Brewin,

R. J. W., Nencioli, F., Dessailly, D., Kwiatkowska, E.,

Casal, T. & Donlon, C. 2021. Performance of Ocean

Colour Chlorophyll a algorithms for Sentinel-3 OLCI,

MODIS-Aqua and Suomi-VIIRS in open-ocean waters

of the Atlantic. Remote Sensing of Environment,

, 112444. DOI: https://doi.org/10.1016/J.

RSE.2021.112444

Torbick, N., Hu, F., Zhang, J., Qi, J., Zhang, H. & Becker,

B. 2008. Mapping Chlorophyll-a Concentrations in West

Lake, China using Landsat 7 ETM+. Journal of Great

Lakes Research, 34(3), 559–565. DOI: https://doi.

org/10.3394/0380-1330(2008)34[559:mcciwl]2.0.co;2

Valente, A., Sathyendranath, S., Brotas, V.,

Groom, S., Grant, M., Jackson, T., Chuprin, A.,

Taberner, M., Airs, R., Antoine, D., Arnone, R., Balch,

W. M., Barker, K., Barlow, R., Bélanger, S., Berthon,

J. F., Beşiktepe, Ş., Borsheim, Y., Bracher, A.,

Brando, V., Brewin, R. J. W., Canuti, E., Chavez, F. P.,

Cianca, A., Claustre, H., Clementson, L., Crout, R.,

Ferreira, A., Freeman, S., Frouin, R., García-Soto, C.,

Gibb, S. W., Goericke, R., Gould, R., Guillocheau, N.,

Hooker, S. B., Hu, C., Kahru, M., Kampel, M., Klein, H.,

Kratzer, S., Kudela, R., Ledesma, J., Lohrenz, S., Loisel, H.,

Mannino, A., Martinez-Vicente, V., Matrai, P., Mckee, D.,

Mitchell, B. G., Moisan, T., Montes, E., Muller-Karger,

F., Neeley, A., Novak, M., O’dowd, L., Ondrusek, M.,

Platt, T., Poulton, A. J., Repecaud, M., Röttgers, R.,

Schroeder, T., Smyth, T., Smythe-Wright, D., Sosik,

H. M., Thomas, C., Thomas, R., Tilstone, G.,

Tracana, A., Twardowski, M., Vellucci, V., Voss, K.,

Werdell, J., Wernand, M., Wojtasiewicz, B., Wright, S.

& Zibordi, G. 2022. A compilation of global bio-optical in

situ data for ocean colour satellite applications – version

three. Earth System Science Data, 14(12), 5737–5770.

DOI: https://doi.org/10.5194/ESSD-14-5737-2022

Vanhellemont, Q. & Ruddick, K. 2021. Atmospheric

correction of Sentinel-3/OLCI data for mapping of

suspended particulate matter and chlorophyll-a

concentration in Belgian turbid coastal waters. Remote

Sensing of Environment, 256, 112284. DOI: https://doi.

org/10.1016/J.RSE.2021.112284

Wakamatsu, L., Britten, G. L., Styles, E. J. & Fischer,

A. M. 2022. Chlorophyll-a and Sea Surface

Temperature Changes in Relation to Paralytic Shellfish

Toxin Production off the East Coast of Tasmania,

Australia. Remote Sensing, 14(3), 665. DOI: https://doi.

org/10.3390/RS14030665

Werdell, P. J., Franz, B. A. & Bailey, S. W. 2010. Evaluation

of shortwave infrared atmospheric correction for

ocean color remote sensing of Chesapeake Bay.

Remote Sensing of Environment, 114(10), 2238–2247.

DOI: https://doi.org/10.1016/J.RSE.2010.04.027

Xiong, X. & Butler, J. J. 2020. MODIS and VIIRS Calibration

History and Future Outlook. Remote Sensing, 12(16),

DOI: https://doi.org/10.3390/RS12162523

Downloads

Published

14.07.2025

How to Cite

Assessing chlorophyll-a retrieval of Sentinel-3 OLCI, VIIRS, MODIS and OC-CCI in Monterey Bay (California, USA). (2025). Ocean and Coastal Research, 73. https://doi.org/10.1590/